2. Heart as a Pump

Table of Contents

Cardiac Cycle ..2
 CVS Pressures ...3
 Heart Failure ...3
 Pericardium ...3
 Timing ..4
 Length of Systole & Diastole ...4
Arterial Pulse ...4
JVP ..4
Cardiac Graph ...5
 Heart Sounds ...5
 Murmurs ..6
Cardiac Output ...6
 Measurement ...6
 Factors effecting CO ..6
 Definitions ..6
Preload ..7
 Factors Effecting EDV ..8
 Relation of Tension to Length in Myocardium (Starlings Law) ..9
Afterload ..9
Myocardial Contractility ..10
 Positive Inotropic Factors ..10
Heart rate ...12
 O2 Consumption ...13
Summary Effects on CO ...13
Functional Factors Effecting CO Overall ...13
Ventricular Function Curves ..15
 Ventricular Pressure Volume Loops ..15
Vascular Function Curves ...18
Coupling Between Heart & Vasculature ...20
Athletes, Heart Transplant & Sympathetic Control of CO ..23
Cardiac Cycle

- With av HR of 72/min:
 - Total cycle = 0.8 seconds
 - Systole = 0.3 s
 - Diastole = 0.5s
 - vent filling ~ 2/3 cycle

Mid Diastole
- Atrial & vent pressure both low
- Rate filling ventricles as V pressure rises above A pressure due to wall stretch
- Vents now 80% full
- Cusps of mitral/tricuspid valves drift towards closed
- 80% vent filling occurs passively

Atrial Systole (late Diastole)
- SA node fires ⇒ P wave on ECG ⇒ atrial contraction (atrial a wave)
- Contraction of atria narrows IVC & SVC orifices to ↓backflow
 - is some regurg
- See small rise in vent pressure
- Atrial kick contributes ~20% vent EDV
 - (vent EDV in supine ~160ml; stand ~130ml)
- Impt in fast AF with loss of kick

Vent Systole
- @ start AV valves close ⇒ isovolumetric contraction:
 - 1st heart sound
 - Sharp rise in intravent pressure
 - Lasts 0.05s
 - Mitral/tricuspid valves bulge into atrium
 - C wave of atrial pressure wave (↑pressure LA:10mmHg. RA:5mmHg)
- Once vent pressure higher than aorta & pulmon ⇒ ejection
- Rapid vent ejection phase after valve open followed by prolonged reduced phase
- Pressure changes:
 - Aorta: 80⇒120
 - Pulmonary a: 5⇒25
- Late systole: pressure aorta > L vent but momentum keeps blood flowing
- Elasticity of aortic walls & periph resistance to flow maintain aortic pressure
- SV ~ 70-90ml
- End diastolic vent volume ~ 120ml
- End systolic vent volume ~50ml
 - Ejection fraction ~65% in norm heart
- Atria:
 - Rapid ejection phase: mitral/tricuspid valves pulled down by vent systole ⇒ ↓atrial pressure⇒
 - Aiding filling
 - = x descent
 - Rest vent systole: rise atrial pressure as blood fills atria = v wave
 - (↑in tricuspid regurg c & v merged into one large v wave)

Early diastole
- Protodiastole =
 - Before aortic/pulmon valve closed
 - Rapid drop vent pressure
 - Lasts 0.04s
 - Ends with valve closure
- Isovolumetric vent relaxation:
By Adam Hollingworth

- Begins with closure of aorta & pulmon valves (2nd heart sound – may be split if aortic closes 1st)
- Incursura in aortic pressure waveform produced by closure of valve causing brief backflow of blood
- Atrial pressures: LA ~5mmHg; RA ~2mmHg
- Ends when vent pressure falls below atrial pressure ⇒ mitral/tricuspid valve opening

- Atrial pressure ↑ after systole until mitral/tricuspid valves open
- Rapid filling of ventricle occurs after mitral/tricuspid opening – most imp part of vent filling as time to fill is shortened with tachycardia
- Y descent of atrial pressure as it empties

CVS Pressures

Heart Failure
- Systolic failure =
 - weakened systolic contraction
 - ↓ ejection fraction
 - responses:
 - activation of genes ⇒ myocardial hypertrophy
 - ↑ sympathetic n.s.
 - ↑ renin & aldosterone secretion ⇒ Na & water retention
 - initially compensatory but then failure worsens with ventricular dilation
- diastolic failure:
 - ↓ elasticity of myocardium ⇒ ↓ filling of vent in diastole ⇒ ↓ SV ⇒ same responses in systolic failure
- high output failure:
 - relative low CO (not absolute)
 - seen in:
 - large AV fistula
 - thyrotoxicosis
 - thiamine deficiency

- Rx:
 - ACEI - ↓ VC & aldosterone ⇒ volume ⇒ ↓ bp ↓ afterload
 - Nitrates – venous VD ⇒ ↓ preload
 - Diuretics ↓ fluid overload ⇒ ↓ preload & afterload
 - B Blockers - ↓ chance of arrhythmia
 - Digoxin - ↑ Ca [in] ⇒ ↑ force of contraction

Pericardium
- Myocardium – epicardium – pericardium
• Between epicardium & pericardium = 5-30ml fluid

Timing

• R atrial systole then L atrial systole
• Left ventricular contraction then R vent
• R vent ejection just before L vent
 ➔ as pressure in pulmon circuit < aortic pressures
• End of systole (S2 heart sound)
 o During inspiration – pulmon valve closure delayed
 o During expiration – aortic & pulmon valves together

Length of Systole & Diastole

• Duration of systole is more fixed than diastole
 ➔ although speed of systole does decr with ↑HR
• Marked decr in diastole with high HRs – results in:
 o ↓ vent filling
 ➔ up to 180/min filling adequate if enough venous return
 o ↓ perfusion of coronary circulation
• cardiac mm cannot tetanise like skeletal mm
• max theoretical rate of vents =400
• only see rate >230 in vents in VT
 ➔ max AV node d/c rate

Arterial Pulse

• pulse felt is a pressure wave NOT blood moving forward
• pressure wave moves faster than blood flow:
 o aorta 4m/s
 o large arteries 8m/s
 o small arteries 16m/s
 ➔ older rigid arteries wave moves faster
• pulse pressure ∝ strength of felt pulse eg
 ➔ no relation to mean pressure
 o shock – narrow pulse pressure 2nd to ↑ diastolic pressure ⇒ thready pulse
 o aortic insufficiency – high pulse pressure 2nd to regurg & ↓ diastolic ⇒ collapsing pulse
• dicrotic notch =
 o notch on falling phase of pulse
 o unable to feel; only measure
 o vibrations from aortic/pulmon valve shutting

JVP

• atrial pressure:
 o ↑ in atrial systole
 o ↑ in isovolumetric contraction – bulge of AV valve into atria
 o rapid↓ in early systole – AV valves pulled into ventricle
 o slow ↑ through systole – atrial filling
 o ↓ as AV valves open in diastole
• JVP waves:
 o A – atrial systole
 o C – isovolumetric contraction - bulging of AV-valves into atrial chambers
 o V – rise in atrial pressure until tricuspid valve opens (due to atrial filling during ventricular systole (*lasts until end of isovolumetric relaxation*))

By Adam Hollingworth
Heart as a pump

By Adam Hollingworth

- **x-descent**: *(follows c wave)* initial pressure drop in atria during initial rapid ventricular ejection = due to atrial relaxation as well as ballistic effect of contracting ventricles on atria.

- **y-descent**: *(follows v wave)* drop in atrial pressure as AV valves open at end of isovolumetric relaxation and onset of early diastole.

- Respiration effects volume of JVP waves:
 - Inspiration & \(\uparrow \text{-ve} \) intra-thoracic pressure \(\Rightarrow \downarrow \text{venous pressure} \)
 -Expiration \(\Rightarrow \uparrow \text{venous pressure} \)

Cardiac Graph

= Wiggers diagram:

Heart Sounds

- **S1** = closure of AV valves = start of systole
- **S2** =
 - closure of aortic & pulmon valves = end of systole

Phases:
1. atrial systole
2. isovolumetric contraction
3. vent ejection
4. isovolumetric relaxation
5. vent filling
By Adam Hollingworth

Heart as a pump

- inspiration ⇒ physiological splitting of S2 by late closure of pulmon valve due to incr preload
- S3 (always follows S2) =
 - rapid vent filling 1/3 through diastole
 - can be normal
- S4 =
 - Filling of stiff ventricle following atrial contraction
 - Just before S1
 - Always pathological

Murmurs
- Blood flow speeds up through narrowing eg:
 - stenosis
 - regurgitation
- turbulent flow ⇒ murmur
- aortic or pulmon valve:
 - stenosis ⇒ systolic
 - regurg ⇒ diastolic
- AV Valve:
 - Stenosis ⇒ diastolic
 - Regurg ⇒ systolic

Cardiac Output

Measurement
- Fick principle = amount of substance taken up by organ/time = arterial level of the substance minus the venous level (A-V difference) x blood flow
- Norm CO = ~70ml/kg/min or 5 litre/min
- Cardiac index =
 - CO/body surface area
 - output/min/m²
 - norm ~ 3.2
 - CI adjusts for differing body sizes

Factors effecting CO
- CO = HR x SV
- As circ is a close system CO usually = VR
- SV determined by:
 - Loading factors –
 - preload (PL)
 - afterload (AL)
 - Myocardial contractility (Cx)
- 4 determinants of CO:
 - HR
 - Cx
 - AL
 - PL
 - All these factors also determine Myocardial O2 demand

Definitions
- Preload = amount of stretch of ventricular mm fibres at end of ventricular filling (aka initial fibre length)
- Afterload = impedance to the ejection of blood into the arterial circulation
 - Impedance rather than resistance as it is a changing resistance
 - Afterload because ventricle only performs work after the aortic valve opens
• Contractility = factor responsible for changes in myocardial performance which are not due to HR, preload or afterload
 ↩ not to confuse with Starling's law
• All myocytes display 5 chars:
 o Bathmotropy = excitability
 o Dromotropy = conductivity
 o Chronotropy = rhythmicity
 o Inotropy = contractility
 o Lusitropy = relaxation

Preload
• Starling's Law of heart = diastolic length of vent mm fibres determine the force of their contraction
 ↩ ie intrinsic quality of cardiac myocytes NOT contractility
• ∴ Amount of vent mm fibre stretch at end of diastole forms basis of Starling Law

Summary preload factors:
 o filling pressure ↩ CVP:
 ▪ blood volume
 ▪ gravity
 ▪ Tx pump
 ▪ mm pump
 ▪ CO
 ▪ periph tone
 o ventricular compliance

Right Side of Heart
• cannot measure stretch but EDV is next best indicator of preload
• EDV can be measured with ECHO
• Another indicator of preload = end-diastolic pressure (EDP) aka filling pressure
• EDV is proportional to EDP but EDV achieved will depend on ventricular compliance
 compliance = ΔV / ΔP
 ∴ EDV = ventricular compliance x filling P

Left Side of Heart
• LVEDP cannot be measured directly
• ∴ next best way to determine LV preload is surrogate pressure measurement = PCWP
• PCWP theory:
 o End diastole: continuous communicating column of blood from LV ⇒ LA ⇒ pulm veins ⇒ pulmon caps
 o Inflate pulmon art catheter balloon, float pressure sensor distally until wedged in pulmon capillary
 o Pressure measured is PCWP
 o Ideally catheter should be in West zone 3 (Pa>Pv>PA)
• Next surrogate of LV preload = CVP:
 o CVP ≈ RAP ≈ RVP ≈ PAP ≈ PCWP ≈ LAP ≈ LVP ≈ LV volume ≈ LV preload
• Downsides of R side pressure surrogates of LV preload are many!!:
 o Valvular disease
 o Pulmon disease
 o Changes in LV/RV compliance
Factors Effecting EDV

- EDV depends on:
 - Compliance – of ventricle
 - Transmural pressure distending it:
 - internal pressure – external pressure
 \[\text{external p} = \text{intrathoracic pressure} \]
- compliance:
 - ↓ compliance ⇒ ↓ EDV for a given distending pressure
- external pressure:
 - ITP (intrathoracic pressure)
 - end expiration = -5 cmH20
 - end inspiration = -10 cmH20
 - inspiration creates a suction effect around heart & central veins ⇒ ↑ vent filling
- internal pressure:
 - EDP in RV ~ CVP
 - Therefore CVP plays key role in determining preload…

Factors Influencing CVP

- Blood volume:
 - 2/3 of total blood volume is in venous system
 - any ↑ in volume ⇒ sig ↑ in CVP
- gravity:
 - influence distribution of venous blood between periph & thoracic veins
 - eg ~500 ml blood pools in LLs in erect position
- Perih venous tone:
 - Esp skin, kidney, splachnic veins
 - Innervated by symp ns ⇒ venoconstriction ⇒ ↑ CVP
- MM pump: esp imp in exercise ⇒ ↑ VR ⇒ ↑ CVP
- Throacic pump:
 - With ↑ ing insp ⇒ ↑ negative ITP & abdo pressure ↑ ve ⇒ ↑ venous gradient from abdo to thorax
 - venous valves prevent back flow during expiration
- Cardiac output:
 - Heart transfers blood from venous to arterial system ⇒ ↑ MAP & ↓ CVP
 - ∴ Everything else being the same ↑ MAP & ↓ CVP acts as a brake

Functional Examples

- decreasing EDV:
 - ↑ intrapericardial pressure
 - eg pericardial effusion,
 - pressure from tumour
 - ↓ ventricular compliance:
 - MI
 - Inflam disease
- increasing EDV:
 - atrial contraction
 - hypervolaemia ⇒ ↑ venous return
 - ↑ pressure gradient to heart along venous flow:
 - inspiration
 - muscular activity
 - moving to lying
Relation of Tension to Length in Myocardium (Starlings Law)

- Nb force of contraction or initial fibre length difficult to measure .
 - Y axis usually = CO, SV, stroke index, stroke work
 - X axis usually = LVEDV, LVEDP, PCWP
- Curve also known as ventricular function curve ← in vitro measurement

- Starlings law of heart = energy of contraction is ∝ to initial length of cardiac mm fibre up to a point
- This is defined by myocardial sarcomere length (~2.2um) & ratchet mechanism:
 - Immediate rise in contractile force – due to overlapping actin filaments & myosin bridges
 - Delayed response (over mins) - ↑ systolic calcium flux – due to stretch sensitive Ca channels
- Starling mechanisms function:
 - Balance outputs of R & L ventricle:
 - 1% difference in RV > LV output over 30mins ⇒ ↑pulmon blood from ~600mls to ~2100mls ⇒ severe pulmon oedema
 ← RV output > LV ⇒ ↑LVEDV ⇒ starling mechanism ⇒ ↑LV output
 - Valsalva Manoeuvre – causes fall in SV
 - In upright exercise: if CVP rises contributes to ↑SV
 - Mediates postural hypotension
 - Mediates arterial hypotension following haemorrhage

Guyton Cardiac Function Curve
- = in vivo curve
- Displays pivotal role of CVP in regards to CO
- Shows how CVP raised the CO by means of Starling mechanism provided HR & MAP are unchanged
- Differs from Starling vent function curve in that is affected by changes afterload & contractility ie in vivo
 ← a ventricular function curve shows only Frank Starling relationship ie isolated mm strip (in vitro)

- Homometric regulation = changes of contractility not due to change in fibre length
 ← ie autonomic system, drugs, ischaemia
- heterometric regulation = changes in CO due to mm fibre length changes

Afterload
- afterload = impedance to vent ejection
- function of:
 - SVR
 - Laplace law: ventricular wall tension
 - T = P.R/wall thickness
 ← : ↑intrathoracic pressure seen with IPPV ⇒ ↓afterload via ↓R & ↑wall thickness
 - aortic root compliance
By Adam Hollingworth

Heart as a pump

- aortic valve dysfunction
- for LV = MAP during systole; for RV = mean pulmonary arterial pressure (during systole)
- MAP = CO x SVR (chief site of resistance = arterioles)

NB:
- isotonic cardiac contraction = against a fixed afterload (in vitro only)
- auxotonic = contraction against a changing afterload (happens in vivo)

Effect of Afterload
- afterload is reflected by ↑myocardial wall tension (T)
- ventricular hypertrophy ⇒ ↓wall tension by ↑ing wall thickness
 ← explained by La Place’s Law:

for thin walled spheres or tubes:

\[P = 2T/r \]

can rearrange: \[T = P \times r / 2 \]

For thick walled sphere or tube:

\[\text{Tension} = \text{wall stress (S)} \times \text{wall thickness (w)} \]

∴ wall stress = \[\frac{P \times r}{2w} \]

- thus wall stress ↑ed by:
 - ↑pressure in chamber (afterload)
 - ↑radius (dilated heart)
- thus wall stress ↓ed by:
 - ↑wall thickness (LVH)
- it is the ↑ed wall stress which ↑s myocardial O2 demand

Myocardial Contractility

- Starling mechanism = intrinsic regulation of contractile strength
- ∴ myocardial contractility = extrinsic or change in contractile energy not due to fibre length changes
- inotropic state = contractility

Positive Inotropic Factors
- Positive inotropic effect on heart ⇒ shifts length-tension curve UP & LEFT eg:
 - Symp n.s. =
 - ↑norad release at symp nerve terminals
 - circulating catecholamines ie norad, adrenaline, dopamine
 - act on \(\beta_1 \) receptors ⇒ ↑cAMP
 - Drugs:
 - Xanthines eg caffeine & theophylline –
 - Phosphodiesterase inhibitor ⇒ ↓breakdown of cAMP
 - Digoxin – inhibitory effect on NaK ATPase ∴ indirect inhibition of NCX pump
 - Angiotensin 2
 - ↑extracellular Ca
 - thyroxine
 - Force frequency relation:
Vent extrasystole condition next beat to be stronger
Due to ↑Ca [in]
- ↑HR –
 - small incr in contractility
 - not very much in vivo
 - if HR ↑ed the 1st beat is weaker than following beats with progressive ↑in strength
 - = Bowditch rate effect
due to ↑size of calcium influx

Noradrenaline effects
- =most impot ionotrope
- NA released from symp nerve terminals in vent wall:
 - binds to B₁ receptors on myocytes (Gₛ linked) ⇒
 - activates a prot – cAMP – prot kinase A – calcium channel phosphorylation sequence ⇒
 - ↑inward calcium current during the plateau of the AP ⇒ ↑intracellular calcium stores ⇒ more forceful systolic contraction
- In addition:
 - sarcoplasmic reticulum calcium uptake pumps are accelerated ⇒ shorter systole
 - This is beneficial as it preserves diastolic filling time (impt in tachycardia)
 - This property (ie relative shortening of systole) is called *lusitropy*.
- Thus the effect of NA is a more *forceful* and shorter systole, which results in following:
 - ↑ed bp: Ventricular pressure ↑s more rapidly in the isovolumetric phase
 - ↑ed Ejection fraction: - velocity of contraction and shortening are enhanced by NA.
 - EF is sometimes used as an indirect index of contractility
 - Stroke volume:
 - Transient ↑ as EF rises, BUT
 - then limited by the concomitant ↓ in EDV as well as ↑MAP.
 - ↓ed Systolic duration: (lusitropy) – shorter ejection time does not significantly curtail SV, because the velocity of shortening is increased. (ie more forceful contraction).

**** **** ****
- Negative ionotropic ⇒ DOWN and to RIGHT
 - Para symp = vagal tone via Ach
 - ↑CO₂, ↓O₂
 - ischaemia via acidosis & hypoxia
 - drugs:
 - BBs & CCBs
 - Barbituates
 - Many anaesthetic drugs
 - heart failure – intrinsic depression:
 - ? cause but thought:
 - ↓regulation of B receptors
 - ↓Ca liberation from Sarcoplasmic reticulum
Heart rate

- CO = SV x HR
- Any change in HR usually occurs as part of integrated response to a ↑↓MAP
- HR under autonomic control:
 - Symp ⇒ ↑HR
 - Parasymp ⇒ ↓HR
- Heart = demand pump ∴ any change in HR will only effect CO if assoc with change in demand from tissues
- Tissues set their demand by means of total venous return ⇒ ↑↓tendency for VR ⇒ Starling mechanism ⇒ adjustment of CO
 - ∴ VR = CO

Isolated Changes in HR

- Eg pacing, atropine
 - Will see surprisingly little change in CO (within limits)
 - cos see an inverse change in SV for any change in HR
- Isolated ↑HR:
 - artificial pacing rate ⇒ ↓diastole but not systole ⇒ ↓ed vent filling time
 - transfer of blood from venous side to arterial side ⇒ ↓EDP & ↑MAP both of which ↓SV
 - at a threshold actually start seeing ↓CO due to ↓↓ed vent filling time
- isolated ↓HR:
 - initially CO will remain constant:
 - ↑HR offset by ↑vent filling time ⇒ ↑SV
 - at threshold will see a ↓CO as ventricles max filled ∴ ↓ing HR ⇒ ↓ing CO
O2 Consumption

- O2 consumption determined by:
 - intramyocardial wall stress (surrogate for afterload)
 - contractile state of heart
 - HR

- Ventricular work = SV x mean arterial pressure
 - thus LV work x7 more than RV

- Pressure work requires ↑↑o2 consumption compared to volume work ie afterload > preload
 - incompletely understood
 - why angina is more common AS : AR

- basal o2 consumption 2ml/100g/min
 - much bigger than skeletal mm
- beating heart 9ml/100g/min
- ↑ in o2 consumption require ↑ in blood flow

Summary Effects on CO

- ∴ 4 determinants of CO:
 - HR
 - Cx
 - AL
 - PL
 - All these factors also determine Myocardial O2 demand
- But any change in single factor remarkable ineffective
- Need coordinated cooperative change in all factor to change CO substantially

Functional Factors Effecting CO Overall

- No change:
 - Sleep
 - Mod changes in environmental temperature
- Increase:
 - Anxiety ↑50-100%
 - Eating ↑30%
 - Exercise ↑ up to 700%
 - ↑temp
 - pregnancy
 - Adrenaline
• Decrease:
 • Lie to sit/stand ↓20-30%
 • Arrhythmias
 • Heart disease
Ventricular Function Curves

Ventricular Pressure Volume Loops

Normal P-V loop for LV:

- **All the information obtained from Vent P-V loop (favourite exam topic):**
 - EF
 - LVEDV – Note: this is number on x axis – NOT point B
 - Indices for afterload = Ea line
 - Indices for ventricular compliance (EDVP Line)
 - Contractility = Ees line
 - Stroke work (PxV = Joules) = area within loop
 - B-A = diastolic filling
 - C-B=isolvolumetric contraction
 - D-C = volume ejected
 - D-A= isovolumetric relaxation

EDPV Line

- P-V relationship during diastole (A⇒B) gives an idea of ventricular compliance
 - most important part of line is End Diastolic P-V line (EDPV)
- ΔP is plotted against ΔV ∴ talk about elastance (ie inverse of compliance)

- EDVP line as shown

ESPV Line

- Similar line to EDVP but drawn on top of ventricular function curve at End systole
- Aka endsystolic elastance of EEs line ie measure of contractility
Effect of Isolated ↑Preload on LV PV Loop

- Loop 1 = normal; loop 2 shows ↑ed preload
- Loop 2 has ↑ed stroke volume as wider
- Contractility & afterload are constant

Effect of Isolated ↑Afterload

- Index for afterload =
 - slope of line connecting LVEDV & End systolic point
 - aka effective arterial elastance (Ea line)
- In loop above this line parallel; in this loop clear ↑in afterload in loop 2
- Loop 2 has ↓ed SV 2nd to ↑ed afterload which manifests as earlier aortic valve closure

Note the decreased stroke volume for loop 2 (which has the increased afterload). The aortic valve is closing at a higher pressure so less volume is ejected during systole.
Effect of ↑ed Contractility
- LVEDV is same for both loops ie preload same
- Ea line is the same ie afterload same
- ESPV Line = index of contractility
- Loop 2 demonstrates ↑SV by mechanism of isolated ↑contractility \(\therefore\) ESPV ↑ed gradient

![Effect of Increased Contractility on LV Pressure-Volume Loop](image)

Note the increased stroke volume for loop 2 (which has the increased contractility).
* The increased slope of the end-systolic pressure-volume line is an index of the increased contractility.
* The end-systolic points of both loops lie on the same 'afterload line' so thereafterload is the same for the 2 loops.
* The LVEDV is the same for the 2 loops so the pre-load is the same.

NB: Above lines demonstrate differences in vitro. In body more integrated changes seen

Effect of Systolic & Diastolic Dysfunction
- L curve = systolic dysfunction:
 - ↓ed stroke volume
 - curve also implies afterload ↑ed by steeper Ea line (not drawn)
- R curve = diastolic dysfunction:
 - EDPV shifted up and left ie preload ↓ed due to ↑elastance \(\Rightarrow\) ↓SV

![Effect of systolic and diastolic dysfunction on the pressure-volume loop of the left ventricle](image)

Figure 20-7. Effect of systolic and diastolic dysfunction on the pressure-volume loop of the left ventricle. Left: Systolic dysfunction shifts the isovolumic pressure-volume curve (see Fig 20-2) to the right, decreasing the stroke volume from b-c to b'c'. Right: Diastolic dysfunction increases end-diastolic volume and shifts the diastolic pressure-volume relationship upward and to the left. This reduces the stroke volume from a-b to a'c'. (Reproduced, with permission, from McPhee SJ et al. Pathophysiology of Disease. 2nd ed. Appleton & Lange, 1997.)
Mechanical Energy & Work

- = a pressure volume area
- Area within the loop = stroke work (mechanical energy) done by heart during single contraction
- = external work of ventricle

• Isovolumetric contraction (upstroke):
 - no ejection & . no external work
 - energy expended to generate potential energy ⇒ converted to heat during diastole

• Potential energy:
 - Purple triangle (EDPV – ESPV – isovolumetric relaxation line)
 - = amount potential energy available during a contraction
 ∴ correlates well with heat generated during contraction
 - total mechanical work + heat generated = PVA of stroke work + potential energy
 ⇔ pressure volume area
 - PVA correlates well with O2 consumption (VO2) of myocardium during single contraction
 - Gross energy efficiency of heart ~15%:
 - Much of contractile energy goes into raising pressure rather than ejection
 - . ↓bp can improve SV in heart failure

• Metabolic energy source variable:
 - 2/3 FFAs
 - rest = glucose & lactate
 - heart is an omnivore

Vascular Function Curves

• Starling Curve (&Guyton Curve) = cardiac function curves which relate:
 - Change CVP – x axis (indep variable)
 - Change in CO – y axis (dependant variable)
 ∴ ie how changes in CVP effect CO
 ⇔ a compliance curve
 - Vascular function curve relates: (switch-a-roo)
 - Change in CO – x axis (indep variable)
 - Change in CVP – y axis (dependant variable)
 ∴ ie how changes in CO effect CVP
 ⇔ a elastance curve
• Impt points:
 o CO = 0 ie cardiac arrest:
 ▪ Pressure becomes an equilibrium throughout whole CVS ie not just venous
 ▪ This = Mean circulatory pressure (MCP) (or Pmc as in diagram)
 ▪ MCP ~ 7mmHg ie vascular system overfilled
 o Point A:
 ▪ @normal CO ~5l/min
 ▪ CVP = ~2mmHg
 ▪ = norm operating pressure of system
 o Break point of line below point A:
 ▪ ↑ing CO ⇒ ↓ing CVP up to a point
 ▪ here intravascular pressure falls < extravascular pressure ⇒ collapse of distensible large vessels
 ▪ CO now limited by VR & cannot ↑anymore
 o If a VFC is combined with a CFC then CFC axis orientation take precedence for convenience

Effect of Change in Blood Volume & Venous Tone
• Transfusion or venoconstriction ⇒ upward shift of curve ie ↑ed MCP
 ⇔ converse is true ie haemorrhage & venodilation ⇒ downward curve shift
• NB neither will affect position or shape of cardiac function curve!!

Effect of change in SVR (ie ↑afterload)
• MCP does not change – only ~3% of total blood is in the arterioles
• Vasodilation ⇒ larger CO (or VR) ⇒ anticlockwise rotation of VFC
• Vasoconstriction ⇒ ↓CO (or VR) ⇒ clockwise rotation of VFC
• NB change in SVR (VasoC or VasoD) will also effect cardiac function curve
Coupling Between Heart & Vasculature

- NB CO = VR ie both describe total flow around closed circuit
- Coupling can be demonstrated by plotting CFC & VFC on same graph (with CFC axis orientation) (Guyton)
- Intersection of 2 curves = equilibrium point at which CVS tends to operate

- Curve shows how disturbances in equilibrium are dealt with:
 - ↑CVP:
 - CFC moved to point A
 - ↑ed CVP would ⇒ ↑CO ie point A ⇒ point B during next systole
 - As a result of ↑CO NET transfer of blood from venous to arterial side of circ ⇒ ↓CVP (due to VFC)
 - With each beat this transfer would be small ie point B ⇒ point C (not B ⇒ C1)
 - Due to ↓CVP next CO of next beat will also be ↓ed (due to CFC) ie point C ⇒ D
 - Point D is still above equilibrium ∴ heart will pump blood from venous to art circ every beat at a rate faster than blood will flow across peripheral capillaries back to venous circulation ∴ CVP continue to ↓ until equilibrium reached

Effect of ↑ed Contractility on Cardiac-Vascular Coupling
- Isolated ↑ed contractility due to symp stim
in vitro demonstration cos symp stim would also have effect on vasculature in vivo!

- equilibrium values will change:
 - CO shift up to point B (due to ↑ed contractility ie no change in CVP initially)
 - NET transfer of blood to art side ⇒ ↓ing CVP (B to C)
 - CO will continue to fall until reach new equilibrium (C to D)
 - at intersection of same VFC but with new CFC

Effect of Changes in SVR

- ↑SVR (vasoC) effects both CFC & VFC downwards
 - @equilibrium for an ↑SVR ⇒ ↓CO (point A to B)

Effect of Transfusion on Coupling

- VFC shifted parallel up to right
 - CFC not changed
 - CO & CVP are both ↑ed (point A to B)
 - the ↑CVP is reflected on the CFC by Starlings Mechanism ie moves along curve but does not change its shape
Coordinated Effect of Max Symp Activity (in Vivo)

- CFC is shifted up & left - ↑contractility overrides the ↑afterload effects
- VFC shifted:
 - Up – venoconstriction predominant
 - Slight rotation down – vasoconstriction = less predominant

Effect of Heart Failure

Heart as a pump - 22
By Adam Hollingworth

• Acute pump failure:
 o Mod to severe failure: CFC shifted right & down
 o Blood volume remains constant immediately
 o \(\therefore \) equilibrium (point A) will slide down normo-volaemia line
 \(\iff \) equilibrium point of will correspond to ↓ed contractility (point B or C)

• Chronic congestive Heart failure:
 o ↑blood volume ⇒ VFC shift upwards
 \(\iff \) 2\(^{nd} \) to aldosterone fluid retention & ↓GFR
 o CFC remains shifted down and right from pump failure (↓contractility)
 o \(\therefore \) mod heart failure – can maintain norm CO (point D) but with higher CVP
 o BUT with severe failure CO↓ing & CVP remains high

• Disparate changed in vent contractility:
 o Eg ant MI effecting LV only ⇒ ↓LV contractility but norm RV contractility
 o Initially LAP norm but ↓LV output
 o RV continue with norm output ⇒
 ▪ ↓ing RAP ⇒ ↓ing RV output
 ▪ ↑ing LAP ⇒ ↑LV output
 \(\iff \) both via CFC effects
 o continue until new equilibrium reached & 2 vent will have same outputs BUT ↑ed L sided pressures ⇒ ↑pulmon venous P which can lead to pulmon oedema

Athletes, Heart Transplant & Sympathetic Control of CO

• During exercise = ↑symp activity ⇒ ↑HR & ↑SV
 o In untrained individuals: bigger ↑HR; less ↑SV
 o In trained athlete: less ↑HR; bigger ↑SV
 o In heart transplant: no direct symp innervation thus
 ▪ Circulating catecholamines – small effect
 ▪ ↑EDV ⇒ ↑vent contraction ⇒ ↑SV
 \(\iff \) mm pump ⇒ ↑venous return
 \(\iff \) ↑Respiration ⇒ ↑venous pressure gradient
 ▪ ↑VD of arterioles in mm ⇒ ↓afterload ⇒ ↑CO