Principles of Vaporisers

Physics

Saturated vapour pressure ... 2
Latent Heat of Vaporisation .. 3
Specific Heat Capacity .. 3
Thermal Conductivity .. 3

Basic Principles of Vaporisers ... 3
Ideal Vaporiser ... 3
Variables ... 3

Modern Vaporisers ... 5

Classification of vaporisers ... 6
Physics
- all matter = solid, liquid or gas
- vapour is not a state of matter
- ANZCA defines vapour: substance in gaseous form below it’s critical temperature
- critical temp = temp above which substance cannot be returned to it’s liquid state no matter how high the pressure
- critical pressure = pressure required to liquefy a vapour at it’s critical temperature eg O2 = 49.7 atm

Saturated vapour pressure
- SVP = pressure exerted on the container wall when liquid & vapor are in equilibrium
- volatile agents exist as liquids <20°C
- molecules which gain enough energy to escape liquid exist as vapour

- SVP depends on:
 - ambient temp
 - characteristics of liquid
- when SVP = atmospheric pressure ⇒ liquid boils
- modern vaporisers not designed to work with volatiles near their boiling points due to steep nature of temp/vapour pressure curve:

 Vapour pressure curves for anaesthetic agents and water vapour

 ![Vapour pressure curves](image)

 • temp of des vap (39°C) has to be above boiling point ⇒ produce a gas under pressure
 - this is then pressure reduced & injected into fresh gas flow
 - ie no variable bypassing chamber
 - see later

By Adam Hollingworth
Latent Heat of Vaporisation
- eg water = 0.58kcal/g
- for molecules to change from liquid to vapour they require energy - usually in form of heat
- amount of heat required = latent heat of vaporisation
- that heat is lost via ↓ in temperature
- ∴ vaporisation ⇒ cooling of volatile agent ⇒ ↓ SVP ⇒ ↓ ed degree of further vaporisation
- ∴ temp compensation in vaporiser is v impt

Specific Heat Capacity
- eg water 4.18 kJ/kg/K
- SHC = amount of heat required to ↑ temp of 1kg of substance by 1kelvin (k)
- SHC of a liquid volatile agent governs amount of energy required to maintain the liquid at a certain temp
- when designing vaporisers the materials used should have a high SHC so temp changes caused by vaporisation are minimised

Thermal Conductivity
- = rate at which heat flows through a substance
- vaporisers made of materials with high thermal conductivity eg copper
 ⇲ helps conduct heat from atmosphere ∴ keep volatile agent stable

Basic Principles of Vaporisers
- fresh gas flow enters vaporiser & divided into 2 streams of flow:
 - 1 into vaporising chamber
 - other into bypass channel
 ⇲ ratio of 2 streams is known as splitting ratio
- gas leaving vaporising chamber goes through network of wicks & baffles ⇒ fully saturated c agent
 ⇲ ↑s surface area & encourages vaporisation
- dial (adjusted by user) alters splitting ratio ∴ final conc of volatile agent leaving vaporiser outlet

Ideal Vaporiser
- performance unaffected by:
 - change in gas flow
 - volume of liquid agent
 - ambient pressure
 - ambient temp
 - latent heat of vaporisation
 - pressure changes related to resp
 - tilting or topping
- low resistance to flow
- lightweight and durable
- economical, safe, minimal servicing
- corrosion & solvent resistant
- unable to fill with incorrect agent
- will not allow administration of 2 agent simultaneously

Variables
Temperature
- ↑ temp ⇒ ↑ SVP of volatile agent inside vaporising chamber
- @35C SVP of isoflurane = double that at room temp
amount of vapour added at the outlet ↑s when temp is high
- modern vaporisers are temp compensated:
 - temp sensitive valve automatically adjusts the splitting ratio relative to the temp
 - bellows or bimetallic strip
 - ↑ when temp ↑ ed ⇒ valve will automatically ↑ gas flow to bypass chamber
 - ↑ when temp ↓ ed ⇒ ↑ gas flow to vaporiser chamber

Flow Rate
- early vaporisers poor saturation:
 - at very high flows due to lack of mixing in vap. chamber
 - at low flows due to lack of turbulence
- modern vaps = flow compensated to allow accurate delivery
 - use wicks & baffles which ensures accuracy between <1 & >10 litres

Carrier gas composition
- vaporisers are calibrated for use with O2
- gases other than O2 ⇒ altered turbulent or laminar flow at splitting valve
 - altered volatile concentrations delivered

Intermittent Back Pressure (Pumping Effect)
- back pressure into vaps during ventilation can cause pressure to build up in vap chamber
 - esp in minute volume dividers
- as vent cycles ⇒ ↓ pressure ⇒ pressurised vapour in vap chamber ⇒ flow out of correct outlet or retrograde through inlet & into bypass gas
- retrograde flow ⇒ ↑ conc agent to pt and is called pumping effect
- methods to avoid pumping effect:
 - pressurising valve downstream of vap
 - bypass channel & vap chamber of equal volume
 - long inlet tube into vap chamber

Altitude
- output of a plenum vap is calibrated to atmospheric pressure
- if vap used at lower pressure (ie ↑ ed altitude) ⇒ output no longer = dialled percentage
- SVP in vap chamber is unaffected by ambient pressure (only effected by temp):
 - 10% isoflurane SVP = 250mmHg at 20C regardless of altitude
- but output represents greater percentage of total air pressure:
 - sea level ⇒ 5486m = 760 ⇒ 380mmHg
 - setting of 2% isoflurane ⇒ now gives 4%
- but note Daltons & Boyles law:
 - 2% of 760mmHg (15.2) = same as 4% of 380 (15.2) 10% partial pressure delivered is the same
 - depth of anaesthesia is dependant on alveolar pp not vapour concentration 10% even though double concentration delivered clinical effect is not changed

By Adam Hollingworth
How much Liquid Agent Used per Hour

- formula:
 \[3 \times \text{fresh gas flow (FGF)} \times \text{volume } \% = \text{ml liquid used/hr} \]
- typically 1ml of liquid volatile \(\Rightarrow\) 200ml vapour
 - which is why tipping is so hazardous!

Modern Vaporisers

Anti-Spill Mechanism

- Tec 5 gen vaps have an antispill device
- this prevents volatile agents entering bypass chamber even if vap turned upside down
 - but vap should still be purged for 30mins following such an event
- Drager 2000 series - has a transparent lever which isolates vap chamber completely when removed from back bar

Selectatec mechanism

- when vap switched on \(\Rightarrow\) interlocking extension rod protrudes \(\Rightarrow\) prevents simultaneous use of another vap
- disadv = fed risk of leaks

Preservatives

- halothane contains thymol
- thymol =
 - means vap needs regular servicing as interferes with function
 - modern agents do not contain thymol

Specific Vap filling device

- agent specific colour & shape-coded device
- stop wrong agent going into wrong vap

Temp Compensated

- valve adjusts splitting ratio

Pumping Effect

- prevented by:
 - downstream valve
 - long vap chamber
 - equal vap/bypass chamber volume
Classification of vaporisers

- 4 main types:
 - plenum
 - draw-over
 - gas blenders
 - computer controlled

Plenum Vaps
- = most frequently used
- chars:
 - unidirectional
 - agent specific
 - variable bypass
 - +ve pressure
 - should be used outside breathing system - high resistance to flow ∴ need pressurised fresh gas
- advs over draw-over devices:
 - more efficient
 - more reliable
- eg is Ohmeda TEC 7 (only cosmetic changes to TEC5):
 - flow & temp compensated
 - no pumping effect
 - consistent output over flow ranges
 - easy control dial
 - glass strip indicating level of volatile agent
 - anti spill
 - mount on selectatec manifold
 - easy fill filter - can fill while vaporiser still in use

Draw over Vaporisers
- same basic principles as for plenum vaporiser but:
 - ↓ed flow resistance ∴ can be used inside breathing circuit
 - but expired vapour builds to high conc & close monitoring needed
 - relatively inefficient
 - fresh gas is drawn through vap due to -ve pressure downstream (from vent or pt)
 - flow through vap is governed by pts minute volume
 - output varies with flow: ↑flow ⇒ ↓output
 - ∴ calibration across wide range of MVs needed
 - eg OMV (oxford miniature versatile vaporiser):
 - simple, robust, portable, versatile ∴ military or developing countries

can use for all agents - just need to change dial
• can be used in draw over or continuous flow anaesthesia
• contains
 - small reservoir of glycol in metal heat sink to compensate for temp changes
 ⇝ as no temp compensating valves
 - metal mesh wicks to ↑output but avoid significant ↑ed resistance

Gas Blender (TEC 6)
• desflurane is extremely volatile & would exist in an unpredictable mixture of liquid & vapour form in an operating theatre ∴ needs specific vaporiser
• des boiling point is 23deg ∴ heat it past its boiling point to ensure predictable vapour present
• requires electrical source of energy as it heats des to 39C at pressure of approx 2 atmos (1500mmHg)
• no bypass channel:
 • stream of vapour (under pressure) flows out of vap chamber
 • this blended with background gas stream
• 2 pressures created:
 • ‘back pressure’ proportional to fresh gas flow is created by fixed flow restrictor downstream from fresh gas inlet
 • des conc is set by a dial which controls a variable restrictor downstream from vap chamber
• ∴ differential-pressure transducer needed to balance mix:
 • continually senses pressure in 2 channels:
 - vapour upstream of variable restrictor
 - backpressure from fresh gas flow
 • transducer controls a pressure regulation valve which sits in vapour channel between chamber and variable restrictor
 ↩ permits flow required to balance pressure in 2 compartments
• TEC 6 takes 5-10mins to be operational after switched on to allow heating of des
• other TEC 6 features (compared to TEC 5):
 • stop point on control dial at 12% - need to press a switch to go higher, safety due to airway irritability
 • tilt detector - shut off if >15deg
 • agent specific filling mechanism
 • des can be added without turning off vap
 • LCD indicator of volume of volatile
 • audible alarm when des running out
 • audible alarm for mains power failure
 • 9v batt back up
 • Drager - des vap can only be removed from backbar only if dial set to T - isolates des to prevent spilling
Aladin Cassette
- new method used with Ohmeda S/5 unit
- contains a central processing unit which measures & adjusts gas flow as required
- conc of agent is adjusted by regulating flow of gas through the cassette by throttle valve
 - \uparrow flow thru cassette \Rightarrow \uparrow conc of volatile to pt
- both flows are electronically measured
- each cassette is magnetically coded for specific agent
- no heating or pressurisation required for vaporisation