Thermoregulation

Definitions ... 2
Intro... 3

Physiology 4
Compartment Model .. 4
Heat Production vs Loss ... 4
Physiological Control of Body Temp .. 6
Effector Responses .. 8
Paediatrics .. 10

Anaesthesia & Thermoregulation 11
Consequences of PeriOperative Hypothermia 12
PeriOperative Hypothermia & Drug Metabolism 12
Prevention PeriOp Hypothermia 13
Minimise Heat Redistribution .. 13
Cutaneous Warming During Anaesthesia ... 13
Internal Warming .. 13

Electrical Measurement 15
Non Electrical 15
Electrical Techniques 16
Clinical Aspects of Temp Measurement 17
Definitions

- homeothermic = where body temp is actively maintained within tight limits (mammals)
- poikilothermic = body temp fluctuates with changes in ambient temp (reptiles)
- interthreshold range (ITR) =
 - range of core temps that does not trigger autonomic thermoregulatory responses (0.2-0.5 degC)
 - within ITR we are effectively poikilothermic
- thermoneutral zone (TNZ) = range of ambient temps where VO2 is a minimum (autoreg by vasoC or vasoD alone):
 - prem = 34-36
 - term = 32-34
 - adults = 22-28
 - another definition = environmental temp range which body temp is normal and remains normal while heat production & evaporative heat loss both remain at minimum (usually referring to naked body)
- within TNZ heat production = heat loss.
 - achieved by using minimal VO2
 - by vasoC / vasoD
 - not by shiver/sweating/exercise
- neutral temp = ambient temp where VO2 = minimum:
 - prem = 34
 - term = 32
 - adult = 28
- critical temp = ambient temp where naked, non anaesthetised, cannot maintain normal core temp:
 - prem = 28
 - term = 23
 - adult = 1

heat = a form of energy. Can be transferred from hotter to colder substance ie down a gradient
 - analogous to a solute
 - measured in calories: 1 calorie (standard international unit) = amount of energy required to ↑temp of 1g of pure water by 1deg celcius
- temperature = measure of thermal state of a substance/body/environment which will determine whether heat will transfer to or from substance/body/environment
 - analogous to a concentration

solute & concentrations:
 - if you add more solute (ie heat) to a solution then measured concentration (ie temperature) will increase.
 - the concentration (temp) will determine whether solute particles (heat) will move to an area of lower conc (temp) or vice versa
 - if you halve a substance with a temp x: will get 2 halves with same temp (conc) but with half the heat (quantity)

specific heat capacity:
 - = amount of heat required to raise the temp of a 1kg substance by 1 kelvin (J/kg/K)
 - specific = quantity expressed in terms of units mass
 - examples of SHC:
 - man = 3.5 kJ/kg/C
 - water = 4.18
 - blood = 3.6
 - gasses = very low ∴ small heat transfer can cause significant temp change in gas
- air = 1.01

- heat capacity = amount of heat required to raise temp of given object by 1K (J/K)
 \[\text{heat capacity} \times \text{mass} \]

- mean body temp = \(\frac{2}{3} \) core temp + \(\frac{1}{3} \) average skin temp

- body heat content = heat capacity \times \text{mean body temp}

- latent heat:
 - latent heat of vaporisation = heat needed to change liquid to vapour without a change in temperature
 \[\text{latent heat of vaporisation of water} = 0.58\text{kcal/g} \]
 - latent heat of fusion = heat needed to change solid to liquid without a change in temp
 - latent heat of crystallisation = solid dissolving on or out from a liquid

- specific latent heat
 - heat needed to convert 1kg of a substance from one phase to another at a given temp (J/kg)
 - lower starting temp = ↑ed energy needed

- critical temp = temperature, above which a substance cannot be liquefied, no matter how much pressure is applied

Intro

- norm core body temp maintained within 0.5-0.8 (usually 36.5-37.3) with slight variations:
 - diurnal -
 - circadian fluctuation = 0.5-0.8
 - lowest asleep, rises with activity
 - gender:
 - female show menstrual monthly variation - ovulation \(\Rightarrow \) ↑ up to 1deg
 - individual

- tight range of norm temp aka set point range:
 - if temp moves outside this range \(\Rightarrow \) physiological effector mechanism activated to counteract change

Anaesthesia Summary

- anaesthesia = challenge to thermoregulatory mechanisms:
 - removal of behavioural responses
 - loss of tonic peripheral vasoc \(\Rightarrow \) redistribution of heat to peripheries (away from core)
 - ↓ threshold of effector responses
 \[\text{↓ size of ITR - to } \sim 5\text{degs} \]
 - ↓BMR by 20-40%
Physiology
Compartment Model

• body heat distributed unevenly
• 2 main compartments
 • central (core):
 - major trunk organs
 - brain = 2/3 body's heat
 - temp narrow range 36.5 - 37.3
 • peripheral compartment:
 - limbs, skin, sub cut tissue = 1/3 body heat content
 - wide temp swings from close to zero - 40deg
 • norm room conditions = av temp 30-32
 • gradient of ~6deg maintained by tonic vasoC in vessels supplying periphery
 - anaesthesia:
 • heat moves peripherally = ↓core temp by ~1deg
 • = dilutional heat loss effect rather than NET heat loss

Heat Production vs Loss

Heat production
• metabolism:
 • basal metabolism ~40kcal/m2/hr (~2000kcal/day)
 • = indep of thermoreg mechanisms ie ↑ed in:
 - kids
 - ↑growth hormone
 - thyroxine
 - febrile illness
• amount of heat generated by metabolism depends on substrate:
 - glucose & aa’s ~ 4kcal/kg
 - fat ~ 9.3kcal/kg
• products of metab:
 - 2/3 energy ⇒ dissipated as heat
 - 1/3 ⇒ ATP generation

By Adam Hollingworth
• shivering:
 - ↑ heat production by x6
 - autonomically mediated
 - infants <3/12 cannot shiver
• exercise - ↑ x20 heat production
• non-shivering thermogenesis:
 - ↑ x3 heat production esp imp in neonates
• vasoC -
 - autonomically mediated
 - ↑ s temp gradient between core & periphery
• behaviour:
 - putting on more clothing
 - quantitatively the most imp factor!!!!

Heat Loss

• radiation (40%):
 - infrared electromagnetic wave transfer of heat from warm object to a distant cooler surface
 - further ↑ ed by vasodilation
 - depends on 4th power of temp difference:
 - ↑ OT temp by 2 deg ⇒ ↓ heat loss by $2^4 = 16$ fold
• convection:
 - = motion of liquid or gas which carries energy from warm area to cool area
 - when layer of air next to skin moves/disturbed ⇒ removing insulating properties
 - heat exchange = proportional to
 - temp difference between skin & surrounding air = as much as 15 deg
 - square root of air velocity
• evaporation: (25% - skin 15%, lung 10%)
 - each kg of water (sweat) ⇒ dissipation of 0.58 kcal/g of heat from body with evaporation
 - \(\text{latent heat of vaporisation of water} \)
 - <10% heat loss but can ↑ ↑ with open surgery (evap skin prep & open wound)
 - more imp in neonates/prems due to:
 - ↑ skin permeability
 - ↑ BSA
 - = only way to lose heat if environment is warmer than core temp
• conduction (5%) -
 - = 2 material objects in direct contact. Temp of one is higher than the other \(\therefore \) they equalise
• behaviour = undress, seek cooler environment
• overall:
 - vasoC = main physiological way of preventing heat loss ie ↓ radiation & ↓ evap
 - respiration = contribute ~10% heat loss
 - 8% evap of water
 - 2% heating of air
Physiological Control of Body Temp

- similar to other homeostatic control systems
- thermoreg control system =
 - afferent
 - central CNS integration
 - efferent effector limb

Afferent Limb

- temp sens organs:
 - naked nerve endings found all over body in:
 - skin -
 - located in sub-epithelium
 - predominant location (20% all afferent thermal info)
 - s/c tissues
 - respond to changes in temp by changing rate of firing → CNS

- 2 types of temp sens neurons:
 - cold receptors:
 - bulbs of Krauss (santa Krauss)
 - outnumber warm receptors 10:1
 - respond to changes in temp range 10-36deg
 - most afferent cold input from skin/periph compartment
 - input to A delta fibres
 - warm receptors:
 - bulbs of Ruffinian (Roof on fire)
 - response range 30-45deg
 - input to unmyelinated C fibres

- thermally sensitive neurons can undergo adaptation:
 - occurs between 20-40deg
 - sensation of heat/cold will gradually fade to thermal neutrality
 - temp >40 → tissue damage → warm sensation → pain sensation

- ascending thermal traffic via lateral spino-thalmic tract in ant cord
 - some signals modified at spinal level:
 - spinal injured pt regulate temp better than expected

Central integration

- hypothalamic = main integrator
- ant hypothalamus:
• integrates inputs in pre-optic area
 \(\rightarrow\) contains temp sensitive cells
• general rule =
 • cold input from periphery
 • warm input from core
• posterior hypothalamus:
 • compares aggregated input with pre-determined set point temp range 36.5-37.3
 • instigates effector responses
• BUT human thermoregulation also occurs at multi other levels eg NRM in pons, PAG in spinal cord

Efferent Limb
• posterior HT \(\rightarrow\) autonomic effector response to cold ie vasoC & shivering
• ant HT \(\rightarrow\) responses to warm ie sweating & vasoD

Characteristics of Thermoregulatory Effectors
• 3 main chars:
 • threshold
 • gain
 • max response intensity
• each mechanism contains all 3 chars
• General Anaesthetic effects:
 • ↓ thresholds
 • no effect on gain + max response intensity
 • removes ability to mount behavioural response:
 • in extreme cold: vasoC & shivering have limited efficacy and vice versa in extreme heat
• range of ambient temps tolerated is ↓ed if effector mechs are inhibited:
 • neurological disease \(\rightarrow\) ↓ shivering
 • drugs eg atropine \(\rightarrow\) ↓ sweating
 \(\Rightarrow\) \(\therefore\) ↓ed min tolerable temp, ↑ed max tolerable temp

Threshold
• core temp at which response triggered
• thresholds can be altered by:
 • diurnal rhythm
 • gender
 • exercise
 • food
 • infection
 • disease
 • drugs/anaesthesia
• vasoC threshold = 36.5
• shivering = 36-36.2
• GA’s effect on ↓ threshold \(\rightarrow\) an ↑ interthreshold range (norm 0.2-0.5) to ~5degs

Gain
• =rate of change of effector response with given change in temp
 \(\Leftarrow\) ie = slope of response curve
• \(\therefore\) gain of shivering = rate of ↑ shivering as core temp continues to ↓ below shivering threshold
• vasoC = very high gain ie max vasoC reached after small ↓ in temp below threshold
• shivering = less gain ie takes larger in temp to reach max response

Max Response intensity
• =upper limit (plateau) of effector response
Effector Responses

- Non shivering Thermogenesis (NST)
- Sweating
- VasoConstriction
- Vasodilation
- Shivering

Non shivering Thermogenesis (NST) (see paeds)
- includes (non restricted to) metabolism of brown fat
- brown fat = specialised fat:
 - multinucleated cells
 - many mitochondria
 - abundant blood supply
 - abundant autonomic nerve supply
 - catecholamines mediate metabolism
 - substrate used mostly = FA’s
- cold stimuli ⇒ NA release ⇒ uncoupling of oxidative phosphorylation ⇒ ↑heat production /gram of fat (rather than ATP production)
- no mechanical work done
- brown fat found in
 - abdomen esp perinephritic
 - around large blood vessels
 - interscapular area
 - base of neck
- brown fat = 2-6% neonate total body weight
- ↑brown fat metab redirects CO to brown fat (by ↑~25%) ⇒ direct heating of blood as well
- NST needs O2 ↓. cold & hypoxia = v bad
- x3 heat production in neonate (in adult has v little effect)

Sweating
- mediated by symp ns postganglionic cholinergic nerves
- prevented by:
 - nerve blockers
 - anticholinergics eg atropine
vital as = only mechanism which can dissipate heat if environ temp > core temp
latent heat of vaporisation = 0.58kcal/kg water (= 2.42 MJ @ body temp)
sweating rate can > 1litre/hr for short periods
 ↓ = heat loss up to x15 BMR
<37/40 prem baby unable to sweat

VasoConstriction
=1st autonomic response to cold
skin blood flow autoreg consists of components:
 • thermoregulatory
 • nutritional
skin flow regulated via A-V shunts in distal vasculature (finger/toes/palms/earlobes:
 • well innervated anastomotic connections between arterioles + venules
 • anatomically + functionally distinct from nutritional capillary network
 ↓ . A-V constriction does not compromise nutritional needs of periphery)
innervated by α-adrenergic SNS
 ↓ minimally affected by circulating catecholamines
 • up to 10% of CO can flow through these shunts
 ↓ doesn't usually effect haemodynamic changes as larger arterioles control MAP are un-
 ↓ blood flow vary from 1ml/100g skin/min ⇒ 150ml/100g/min via A-V anastomotic system

Vasodilation
mediated via A-V shunts
max cutaneous vasoD at temp above that which causes max sweating intensity
 ↓ ie max sweating reached before max vasoD
extreme heat stress:
 • blood flow through skin 7 l/min ie whole resting CO
vasoD ineffective if ambient temp > core temp

Shivering
= involuntary oscillatory pattern of skeletal muscle activity that occurs once cold core threshold (for
 shivering) is reached (~35.9)
vigorous shivering ⇒ ↑metabolic heat production:
 • briefly = x6
 • sustained shiver = x2
components of shiver:
 • rapid frequency component = 200Hz
 • slow frequency = 4-8Hz synchronous waxing & waning mm contraction which centrally
 mediated
shiver motor centre =
 • located between ant & post HT
 • inhibited by impulses from heat sensitive area (ant HT)
efferent pathway has multiple connections:
 • RF in mesencephalon
 • pons
 • medulla
 ↓ ends on spinal α motor neurons
 • see ↑ed mm tone prior to shivering
infant <3/12 cannot shiver
Peri-Operative Shivering
common & distressing for pt ie can ↑pain
• causes are complex but hypothermia is most impt
• not assoc with hypoxaemia (hypoxia inhibits it)
• prevention of hypothermia is best Rx
• other options =
 • pethidine 0.33mg/kg IV
 • tramadol 25mg
 • fentanyl 1mcg/kg
 • clonidine 2mcg/kg
 • ondansetron 0.1mg/kg

Paediatrics
• thermoregulatory responses well developed in term neonates BUT hypothermia develops rapidly if compensatory mechanisms overwhelmed
• neonates have min insulating s/c fat
• neonates have large BA : volume ratio ie x2.5 adults
• open/flaccid posture neonates ⇒ ↑heat loss
• large head (with ↑ed relative cerebral flow) ⇒ ↑heat loss
• large min ventilation ⇒ ↑heat loss
• infants <3/12 dont shiver
• term baby can sweat >37.2 BUT prems <37 week unable to sweat
• principle heat production mechanism = NST
• poorly developed behavioural responses ie max = crying
Anaesthesia & Thermoregulation

General Anaesthesia

• effects:
 • behavioural responses totally abolished
 • significant ↓ autonomic regulation -
 - specifically thresholds ⇒ ITR x10-20
 • warm response threshold ↑ ed,
 • cold response threshold ↓ ed
 ↓ all anaesthetic agents ↓ cold threshold in dose dependant fashion
 • GA usually ⇒ mild, inadvertant hypothermia in 3 phase pattern:
 • phase 1 (1st 30-45min) =
 - rapid ↓ core temp 1-1.5 deg
 - due to
 • redistribution & dilution of core heat ⇒ periphery
 • vasoC cold threshold ↓ ed
 • phase 2 (2-3hrs):
 - gradual linear ↓ core temp of ~1deg over 2-3hrs
 - due to heat loss > heat production
 - BMR during GA ↓ by x20-40%
 - loss of heat via radiation, convective, evaporative
 • phase 3
 - = plateau where heat loss = metabolic heat production
 - seen when pt sufficiently hypothermic to reach vasoC cold threshold

Regional Anaesthesia

• mechanisms:
 • redistribution of heat = main mechanism
 • ↓ ed afferent temp input to CNS - due to block
 - pt may deny feeling cold but be hypothermic & shivering
 • ↓ ed thresholds (as GA) -
 - partially due to co-sedative drugs given
 • shivering -
 - less effective as less mm mass to shiver ie only upper limbs/body
- gain & max intensity ↓ed by ~50%
- overall effect is less than GA as vasoD restricted to lower body/limbs
 ↓ see ~0.5 degree drop in temp
- pattern of response similar to GA phase 1 & 2
- phase 3 =
 - not seen as vasoC not possible via blocked nerves
 - may see passive plateau in well insulated pts during minor surg
 ↓ serious hypothermia possible in major surgery
- combined regional/GA = exceptional high risk of hypothermia:
 - ↓ effector response - ↓ shivering & ↓ vasoC
 - ↓ afferent inputs

Consequences of PeriOperative Hypothermia

- drop of 1-2 deg below norm:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac morbidity</td>
<td>increased × 3</td>
</tr>
<tr>
<td>Periop wound infections</td>
<td>increased × 3</td>
</tr>
<tr>
<td>Periop blood loss</td>
<td>increased by 30%</td>
</tr>
</tbody>
</table>

- cardiac M+M due to:
 - ↑ circulating catecholamines ⇒
 - ↑ MAP (↑ afterload)
 - ↑ cardiac irritability = ↑ arrhythmias

- periop wound infections:
 - directly related to s/c wound tissue O2 tension
 ↓ compromised by hypothermia induced vasoC
 - mild hypothermia directly impairs immune function:
 - ↓ B cell mediated antibody production
 - ↓ non specific oxidative bacterial killing by neutrophils

- periop blood loss:
 - impaired platelet function - via ↓ thromboxane release
 - ↓ clotting factor enzymes function
 ↓ NB lab coag tests = norm as performed at 37 deg in lab

PeriOperative Hypothermia & Drug Metabolism

- drug enzyme systems = temp sensitive
- muscle relaxants half lifes:
 - vecuronium =
 - <35 = ↑100%
 - atracurium =
 - <33 = ↑160% duration
- (less temp dependant)

• volatiles:
 - hypothermia ⇒ ↑ tissue solubility
 - MAC halothane & isoflurane: ~5% ↓ with each 1deg ↓ core temp
 - (at brain temp 20deg no anaesthesia required)

• IV drugs - ↓ 1deg =
 - ↑ plasma conc:
 - propofol by 10%
 - fentanyl by 5%

Prevention PeriOp Hypothermia

• 3 strategies:
 - minimise heat redistribution
 - cutaneous warming during anaesthesia
 - internal warming

Minimise Heat Redistribution

• preop warming of periph compartment - eg forced convective warm air (Bair hugger)
 - need ~1hr prewarming to be effective
 - difficult to logistically achieve

• preop pharm vasoD:
 - facilitates core ⇒ peripheral redistribution of heat
 - does not effect core temp as pts other (ie not vasoC) thermoreg responses are intact
 - eg nifedipine ⇒ ↓ s extent of initial redistribution hypotermia by 50%

Cutaneous Warming During Anaesthesia

- passive insulation:
 - eg space blanket
 - ↓ s cutaneous heat loss by ~30% by trapping layer of still air
 - additional layers of passive insulation do little else

- active warming:
 - much more effective
 - initially: core heat ⇒ periph compartment
 - only way to correct is to ↑ heat in periph compt > core .: reversing gradient

- Most effective = forced air convective warming (Bair):
 - warm air replaces cold air
 - convection ⇒ ↑ ed heat gain as forced air is warmer than skin
 - must be directly next to skin with no intervening layers
 - larger area covered = more effective
 - blankets on top of Bair hugger ⇒ ↓ efficacy by preventing air circulating
 - NB: if ↓ ed lower limb bloody supply (aortic clamp) then should avoid LL warming in order to ↓ effects distal ischaemia

Internal Warming

• warmed IVF:
 - 1 litre fluid at room temp ⇒ ↓ core temp ~0.25deg
 - .: always use warm fluids or fluid warmers esp if major haemorrhage
 - needs to be used in combo with other techniques - not successful alone

• airway humidification:
 - limited use
• <10% metabolic heat lost via this route
• cardiopulmon bypass: transfers heat at rate & magnitude more greatly than any other route
• peritoneal dialysis/lavage = very effective but not usually applicable
• amino acid infusions:
 • can give during anaesthesia ⇒ ↑ metabolic rate
 • ml for ml compared to crystalloid will lead to ↓ ed hypothermia
 • not really used in practise due to concerns about cardiac outcome with ↑ ed metabolic rate
Electrical Measurement

Non Electrical
- aka direct reading
- categories:
 - liquid filled
 - dial
 - chemical

Liquid
- generic advs:
 - simple
 - linear expansion with temp
- generic disadvs:
 - slow
 - breakable/injury
 - non-remote
 - intermittent
 - non recording

Mercury Thermometer
- adv: reliable, cheap, familiarity, can be made in maximum reading form
- disadvantage:
 - slow - 2-3mins
 - risk of injury high
 - cannot read colder than -39C

Alcohol Thermometer
- adv:
 - cheaper than mercury
 - better at v low temps
- disadv:
 - unsuitable for high temp readings (alcohol boils at 78.5deg)
 - scale is less linear

Dial Thermometers
- bimetallic strip:
 - 2 dissimilar metals fixed together in coil which expands/contracts by different amounts based on temp changes
 - causes coil to tighten/relax ⇒ change on indicator scale
 - used commonly in TEC-vaporizers
- Bourdon gauge:
 - gauge attached to a sensing element containing small tube of mercury or volatile liquid
 - works on 3rd Gas law: temp change ⇒ for fixed volume, absolute pressure of gas varies with absolute temp
 - this then recorded on calibrated scale

Chemical
- single use:
 - strip containing rolls of cells which contain dye & melt at certain temp
 - higher temp ⇒ more cells melt ⇒ more dye released
- reusable:
 - cells have diff long chain polymers whose optical properties change with temp
chloresteric liquid crystals which change colour with temp

Electrical Techniques

- aka remote reading thermometer

Resistance Thermometers

- based on fact that electrical resistance of metal ↑s linearly with ↑temp
- configuration:
 - platinum wire resistor
 - battery
 - ammeter to measure current (calibrated for temp display)
- but:
 - system is too simple
 - would be too sensitive
 - needs a Wheatstone bridge
∴ not really used

Thermistors

= what is used in theatres everyday
- small bead of metal oxide (eg cobalt)
- resistance falls exponentially as temp rises (opposite to platinum resistor)
- adv:
 - can be made very small eg end of flexible probes
 - cheap to make
 - accurate
 - greater change in resistance with smaller temp changes (compared to resistance thermometers) ie ↑ sensitivity
 - quick response time -
 - cos is small ∴ has small heat capacity
 - essential for use in CO measurement via thermal dilution technique
- disadv:
 - calibration may change if exposed to severe temp changes eg heat sterilised
 - hysteresis
 - ageing

Infrared Thermometers

- body gives off thermal electromagnetic radiation over range of wavelengths
- objects at body emit primarily infrared radiation
- intensity of radiation & wavelength depend on temp
- lens focuses infrared thermal radiation onto a detector
- detector is a concentrated area of many thermocouples. Called a thermopile
- detector converts radiant power to an electrical signal which can then be displayed in temp units
- needs to account for ambient temperatures
- used for tympanic & skin probes

ThermoCouples

- at a junction of 2 dissimilar metals ⇒ small voltage produced
- magnitude of voltage depends on temp at this junction
 ≡ Seebeck effect
- junction = thermocouple
- use metals eg copper & constantin
- 2nd junction is needed as
 - reference junction AND
• complete circuit
• reference junction needs to be kept at constant temp while other junction = temp probe
• adv:
 • measuring probe can be made in form of a needle
 • small heat capacity ∴ rapid response
 • calibration does not change even if couple needs to be replaced
 • accurate to 0.1°C

Clinical Aspects of Temp Measurement

• core temp can be measured directly or indirectly at various sites:
 • pulmon artery (via PAC)
 - = gold standard
 - not practical unless PAC indicated
 • tympanic membrane:
 - accurate as is close to ICA
 - probe can damage TM
 - more suitable for single measurements
 - indirect infrared TM monitors are safer & used more frequently (lie approx 1cm from TM)
 • axillary - reflects core temp if placed close to axillary artery with arm adducted
 • nasopharynx:
 - reasonable reliable - close to ICA
 - easy to access
 - disadv:
 • bleeding - esp old or anticoag
 • inaccurate if exposed to airflow eg too deep & lying next to ETT/LMA
 • lower oesophageal:
 - ideally needs to be lower 1/3 to avoid false readings from gas flow in trachea
 - oesophageal stethoscope with integrated thermistor = sit behind LA, very accurate
 • rectal/bladder:
 - close to core temp but is a lag as organs are not well perfused
 - affected by faeces/rate of urine flow
 - bladder > rectal at reflecting core temp
 • skin:
 - useful in neonates - sensor on ant abdo wall
 - useful in detecting core:periph gradient
 - affected by
 • perfusion
 • hydration status
 • sweating

• indirect measurement of CO = simultaneous recording of periph & core temp:
 • ↓CO ⇒ compensatory ↑vasoC ⇒ ↑SVR ⇒ ↓periph temp ⇒ ↑core:periph gradient
 ⇐ : ↑core:periph gradient = ↓CO
Examples of Temps at Various Sites

<table>
<thead>
<tr>
<th>Site</th>
<th>Temp c/f core</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buccal</td>
<td>0.2 – 0.4 below</td>
<td>bleeding</td>
</tr>
<tr>
<td>Nasopharyngeal</td>
<td>~ core</td>
<td>perforation, wax / obstruction</td>
</tr>
<tr>
<td>Tympanic</td>
<td>~ core</td>
<td></td>
</tr>
<tr>
<td>Axilla</td>
<td>0.4-0.7 below</td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>~ or > core</td>
<td>perforation, cultural, slow</td>
</tr>
<tr>
<td>Lower oesophagus</td>
<td>0.5 below</td>
<td>cooling by trachea if too high</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>~ core</td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>~ core</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>< core</td>
<td>dependent on skin perfusion</td>
</tr>
</tbody>
</table>