Foetal & Neonatal Physiology

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amniotic Fluid</td>
<td>2</td>
</tr>
<tr>
<td>Foetal Circulation</td>
<td>2</td>
</tr>
<tr>
<td>Saturations in Different Foetal Vessels</td>
<td>2</td>
</tr>
<tr>
<td>Percentage of Blood Flow & Direction</td>
<td>3</td>
</tr>
<tr>
<td>Changes At Birth</td>
<td>3</td>
</tr>
<tr>
<td>Respiratory</td>
<td>3</td>
</tr>
<tr>
<td>CVS Changes</td>
<td>4</td>
</tr>
<tr>
<td>Physiology Changes Neonate → Infant</td>
<td>5</td>
</tr>
<tr>
<td>Cardiovascular Changes</td>
<td>5</td>
</tr>
<tr>
<td>Resp Changes</td>
<td>6</td>
</tr>
<tr>
<td>Airway Changes</td>
<td>7</td>
</tr>
<tr>
<td>Renal</td>
<td>7</td>
</tr>
<tr>
<td>GIT</td>
<td>7</td>
</tr>
<tr>
<td>Body Fluid Composition in Neonate</td>
<td>8</td>
</tr>
<tr>
<td>Glucose Homeostasis</td>
<td>8</td>
</tr>
<tr>
<td>CNS</td>
<td>9</td>
</tr>
<tr>
<td>Thermoregulation</td>
<td>9</td>
</tr>
<tr>
<td>Specific Problems of Prematurity</td>
<td>11</td>
</tr>
<tr>
<td>Vitals Signs</td>
<td>11</td>
</tr>
</tbody>
</table>
Amniotic Fluid
- volume ranges 500-1500ml
- vol peaks @ 34-40 then slowly ↓s
- function:
 - protection against physical impacts ie a cushion
 - route for recycling foetal renal output
 - space for symmetric foetal growth
 - helps distribute pressure of uterine contractions evenly over foetus
- creation:
 - early preg: ultra-filtrate of foetal plasma : part of foetal ECF
 - late: mainly foetal urine ⇒ swallowed & reabsorbed in gut. turnover ~1-2days

Foetal Circulation
- 55% fetal CO ⇒ placenta
- blood in umbilical vein Spo2 80%
- placenta ⇒ liver
- ductus venosus allows blood to bypass liver ⇒ IVC
- Returning IVC blood ⇒ heart ⇒ through PFO ⇒ L atrium
 - allows blood with ↑ed Spo2 to go to brain
- SVC blood ⇒ R vent ⇒ pulmon artery ⇒ ductus arteriosus ⇒ aortic arch post to L subclavian
 - means blood with ↓ed Spo2 flow to trunks & LLs

Saturations in Different Foetal Vessels
- Ductus venosum = 80%
• IVC 67%
• Hepatic Portal blood = 26%
• SVC 30%
• systemic circulation = 60%

Percentage of Blood Flow & Direction

Changes At Birth

Respiratory

- changes:
 - loss of placental gas exchange
 - initiation of ventilation of newborns lung
 - start of pulmon gas exchange
 - establishment of FRC
- physiology of first few breaths:
 - pre delivery lung contains ~20ml/kg fluid
 - some expelled with thoracic compression during movement through vaginal birth canal
 - rest rapidly absorbed & replaced with air
1st breath: v large -ve ITP ie -60 to -70cmH20
next breaths: progressively less -ve ITP as establishment of air-liquid interface with surfactant
∴ FRC ↑s rapidly after 1st breath:
- 10mins FRC ~17ml/kg
- 30-60min ~30ml/kg (=adult value)

CVS Changes
- changes:
 - loss of umbilical circulation to placenta
 - closure of ductus venousus
 - functional closure of foramen ovale
 - closure of ductus arteriosus (reversible)
 (↑ NB is less responsive to O2 in prems)
 - large ↑pulmon circulation (reversible)

Physiology of Changes
- in fetus R & L heart pump in parallel rather than series
 ↩possible due to PFO & PDA
- umbilical vessels have thick muscular walls which v reactive to:
 - trauma
 - tension
 - catechoaines/bradykinin/angiotensin
 - changes in PO2
- @birth:
 - placental circulation cut off ie flow through umbilical vein ceases
 - ductus venosum closes - unknown mechanism :
 - peripheral resistance sudden ↑
 - aorta pressure rises until > than pulmon artery
 - infant ↑ing hypoxia ⇒ activation of resp centre of newborn
 - infant gasp initiates circulatory changes:
 - expansion of lung ⇒ ↓pulmon vascular resistance to ~10% of intrauterine value
 (↩ not O2 mediated as occurs with N2 inflation breaths)
 - ⇒ ↑LA pressure > RA & IVC due to:
 - ↓pulmon resistance ⇒ ↑LA filling
 - ↓RA filling due to occlusion of umbilical vein
 - ↑ed LV afterload due to closure of umbilical arteries
 ↩ functional closure of PFO (with fusion in days)
 - reversal of flow through ductus arteriosis - due to:
 - pulmonary artery pressure falls to 50% of intrauterine value (35mmHg
 - ↑aortic pressure
 ↩ within minutes ductus starts to close ⇒ turbulent flow = murmurs of newborn
 - placental transfusion – sucks blood from umbilical vein (upto 100mls blood)
- Ductus arteriosus:
 - Initial functional closure
 - 24-48hr anatomical closure by intimal thickening
 - Ductus Arteriosus closure not totally understood:
 - Incre in O2 arterial tension
 - ↓ing conc of prostaglandins, bradykinin, adenosine
 ↩ prostaglandin synthesis blocked by inhibition of cyclooxygenase at birth
DA post birth can be:
 - closed with drugs that inhibit COX
 - kept open with VDs eg NO/prostaglandins

- morphology changes of heart & vasculature - over weeks:
 - @ birth:
 - 2 ventricles = same weight - due to parallel foetal circuit
 - arterioles of pulmon circuit = thick & muscular
 - after birth:
 - RV fails to grow like LV
 - muscular layer of pulmon circulation is lost

Physiology Changes Neonate ⇒ Infant
- neonate = 1st 28 days of life
- infant = 28d ⇒ 1 year

Cardiovascular Changes

<table>
<thead>
<tr>
<th></th>
<th>Term</th>
<th>6/12</th>
<th>1yr</th>
<th>2yr</th>
<th>5yr</th>
<th>12yr</th>
<th>adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>130</td>
<td>120</td>
<td>120</td>
<td>105</td>
<td>90</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>SBP</td>
<td>80</td>
<td>90</td>
<td>96</td>
<td>100</td>
<td>94</td>
<td>113</td>
<td>120</td>
</tr>
<tr>
<td>DBP</td>
<td>45</td>
<td>60</td>
<td>66</td>
<td>66</td>
<td>55</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>SV</td>
<td>4.5</td>
<td>7.4</td>
<td>11.5</td>
<td>17</td>
<td>28</td>
<td>53</td>
<td>85</td>
</tr>
<tr>
<td>VO2</td>
<td>6</td>
<td>5</td>
<td>5.2</td>
<td>6.4</td>
<td>6</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Hb</td>
<td>16.5</td>
<td>11.5</td>
<td>12</td>
<td>12.5</td>
<td>12.5</td>
<td>13.5</td>
<td>14</td>
</tr>
<tr>
<td>blood volume</td>
<td>90ml/kg</td>
<td>80 ml/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P50</td>
<td>18</td>
<td>24</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i.e:
- ↓ing:
 - HR
 - VO2
 - Hb
- ↑ing:
 - blood pressure
 - SV
 - p50

- blood pressure:
 - SBP in kids = ~80 + (age x2)
• heart rate:
 • basal Hr is higher compared with adults
 • rate is very sensitive and susceptible to bradycardia:
 - vagal stim
 - over anaesthetic (volatiles)
 - hypoxia
 \[\rightarrow\] will lead to dramatic ↓CO
• neonate/infant circ less adaptive with less developed autoregulation:
 • CO = HR dependant because of relatively fixed SV
 \[\leftrightarrow\] as LV is poorly developed and non-compliant
 • SNS + baroreflexes are not fully mature:
 - CVS blunted responses to exogenous catecholamines
 - low intracellular Ca stores
 • less able to vasoconstrict esp in light of hypovolaemia

Resp Changes
• lower gestational age ↓ed surfactant \[\rightarrow\] ↓lung compliance, ↑WOB, alevoli dry

<table>
<thead>
<tr>
<th></th>
<th>Cl (ml/kg)</th>
<th>Csp (ml/kg)</th>
<th>MV (ml/kg)</th>
<th>I:E</th>
<th>FRC</th>
<th>VO2 (ml/kg)</th>
<th>CV (ml/kg)</th>
<th>P50 (mmHg)</th>
<th>RR</th>
<th>DS (ml/kg)</th>
<th>TV (ml/kg)</th>
<th>Shunt</th>
<th>(A-a)O2 (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonate</td>
<td>5</td>
<td>.05</td>
<td>220</td>
<td>1:1</td>
<td>30</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>40</td>
<td>2.2</td>
<td>7</td>
<td>10%</td>
<td>25</td>
</tr>
<tr>
<td>Adult</td>
<td>200</td>
<td>.05</td>
<td>100</td>
<td>1:2</td>
<td>30</td>
<td>3.3</td>
<td>7</td>
<td>27</td>
<td>13</td>
<td>2.2</td>
<td>7</td>
<td>2-5%</td>
<td>5</td>
</tr>
</tbody>
</table>

ABG:

<table>
<thead>
<tr>
<th></th>
<th>Prem</th>
<th>term</th>
<th>1/12</th>
<th>1yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>7.37</td>
<td>7.4</td>
<td>7.41</td>
<td>7.39</td>
</tr>
<tr>
<td>PO2</td>
<td>60</td>
<td>70</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>PCO2</td>
<td>37</td>
<td>39</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>HCO3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• airway resistance x15 higher in neonate :adult (25 vs 1.6cmH20/L/s)
• sites of resistance:
 • neonate =
 - nose 28%
 - upper airway 46%
 - LRT 26%
 • adult =
 - nose 62%
 - upper airway 34%
 - LRT 4%
• lung development:
 • @ birth = bronchial tree fully developed
 • alveoli ↑size & number until @ 8yrs old - surface area: 8 \[\Rightarrow\] 70m²
 • floppy chest walls \[\Rightarrow\] closing volume >FRC until age 6 when equal
 \[\Leftarrow\] \[:. \Rightarrow\] atelectasis & V/Q mismatch
• GA: diaphragm splinting \[\Rightarrow\] further ↓FRC
• diaphragm:
most impt mm for resp in neonate/infant

- <1yr old =
 - diaphragm inserts horizontally ∴ mechanically inefficient
 - only 30% type I fibres (slow twitch, high oxidative fibres)
 ↦ ∴ easily fatigued esp by ↑airway resistance or impaired function
 ↦ ∴ <1yr old should have controlled vent for all procedures

- breath pattern = sinusoidal with no exp pause
- TV = limited by horizontal rib cage ⇒ only way to ↑alveolar vent is by ↑ing RR
- preterm's have ↓response reflexes to ↓O2 & ↑CO2
 ⇒ norm in term babies
- I:E ratio of 1:1 + exp grunting = ways to provide ‘auto peep’

Airway Changes

- <1yr:
 - large head + occiput ⇒ ↑flex neck & potential obstruction (pharyngeal buckling)
 - tongue relatively large for oropharynx
 - genioglossus muscle v sensitive to anaesthetic ⇒ difficult airway
 - epiglottis =
 - large
 - floppy
 - U shaped
 ↦ straight blade
 - larynx:
 - higher - C3/4 (vs C5/6)
 - ant tilted
 - funnel shaped
 - cricoid = narrowest part of URT
 - trachea:
 - diam = 6mm (vs 14mm)
 - length - proportional to weight = av 5cm

Renal

(changes esp seen ↑ed in prems)
- full complement of nephrons @ 36/40 but:
 - ↓creat clearance:
 - RBF ~5% CO ⇒ ↓GFR
 - @1month RBF ~20%
 - GFR reaches adult level ~2yrs
 - ↓Na retention = obligate salt losers
 ⇒ but also poor capability of handling high salt loads
 - ↓diluting AND concentrating ability
 - ↓glucose excretion:
 - offset by tendency towards hypoglycaemia in neonates/prems/DM mother
 - ↓HCO3 reabsorption

GIT

- ↓pH & ↑gastric volume
- fasting may ⇒ ↑↑gastric volume
 ⇒ ∴ clear fluids upto 2hrs pre-op may ⇒ ↓gastric volume and ↑pH
- immaturity of neonatal liver enzymes - phase 1 & phase 2
Body Fluid Composition in Neonate

- neonate has more water/less fat than adult:
 - newborn = 75% water \(\Rightarrow\) preterm even higher @23wks = 90% water (60%ECF, 30%ICF)
 - 40% ECF = water
 - 35% ICF = water
 - adult = 60% water
 - 20% ECF = water
 - 40% ICF = water
- term newborns usually lose 5-10% of weight in 1st weeks of life which almost all = water loss
- insensible water loss:
 - route of loss:
 - 2/3 via evaporation
 - 1/3 via resp tract
 - ↑↑ed preterm = ↑↑ed insensible water loss
- Na & K levels as adults
 - ↓↑Na - usually 2nd to over or under hydration in relation to insensible water loss
 - ↑↓K linked to acid base: alkalosis \(\Rightarrow\) K into cell \(\Rightarrow\) hypokalaemia and vice versa
- Ca levels:
 - initially high 2.75 \(\Rightarrow\) ↓ing to 2.12mmol/L over 2-3 days
 - ionised Ca is more impt as is active form
 - hypocalcaemia:
 - early onset: prem baby with DM, perinatal asphyxia
 - late onset: high phosphate level (hypoparathyroid), maternal anticonvulsant, vit D def

Fluid Requirements

- Day of life:
 - day 1: 2ml/kg/hr = 50ml/kg/day
 - day 2: 3ml/kg/hr
 - day 3: 4,2,1 rule
- electrolytes:
 - Na 3-5mmol/kg/d
 - K 2-3mmol/kg/d
 - Cl 1-3mmol/kg/d
- peri-op glucose:
 - 120mg/kg/hr = enough to prevent hypoglycaemia

Glucose Homeostasis

- glucose rapidly transported across placenta via facilitated diffusion
 \(\Rightarrow\) ie no foetal glycogentic or GNG capacity
- foetal BSL ~70% of mothers
- 3rd trim: foetus prepares for fasting immed post birth
 - accumulates stores of fat & glycogen:
 - glycogen 9g @33wks, 34g @40wks
 - upregulate enzymes required for mobilisation of stores
- post birth:
 - rapid upregulation in 1st hr of life of GNG enzymes eg pyruvate carboxylase, glucose-6-phosphatase
• plasma glucose nadir 1-2hrs post op
• hormone changes:
 - ↓ insulin
 - ↑ glucagon, ↑ adrenaline, ↑ GH ⇒ glycogenolysis, lipolysis, GNG
• ↑ fatty acid oxidation ⇒ ↓ glucose utilisation ⇒ ↑ plasma glucose
• glycogen stores limited (4g/kg) ⇒ need to become GNG dependant - usually within 4-8hrs
 ←: premature babies with ↓ glycogen supplies will frequently become hypoglycaemic
 ⇒ signs: apnoea, seizures, cerebral damage
• BSL -
 - normal term neonate = 2.7-3.3
 - preterm = 2.2
• as feed switch to adult CHO metabolism ⇒ laying down ↑ ing glycogen stores to survive fasting
 with ↓ ing need for GNG & avoiding hypoglycaemia

CNS
• ↓ central control of resp - prems esp prone to apnoea’s
• ↓ ventilatory response to CO2 in prems (norm in term)
• 1MAC:
 • Halothane : neonate = .87 1-6months = 1.08
 • Isoflurane : - neonate = 1.6% 1-6m = 1.87
 - prem <32w =1.28 32-37w = 1.4
 • Sevo : - neonate - 6 month = 3.2 –3.3 6m-12 yr = 2.5

Thermoregulation
• = poikilotherms ie
 • large BSA:weight
 • more susceptible to temp changes 2nd to radiation, convection, evaporation
• thermoneutral zone = range of ambient temps where VO2 = minimum
 • prem = 34-36C
 • term = 32
 • adult = 28
• neutral temp (NT) = ambient temp where Vo2 minimum
 • prem = 34
 • term = 32
 • adult = 28
• critical temp (CT) = ambient temp where naked, non anaesthetised cannot maintain core temp:
 • prem = 28C
 • term = 23C
 • adult = 1C
• interthreshold range = range core temp between which no autonomic response triggered
• problems specific to neonates/infants:
 • large BSA
 • little insulating fat
 • open/flaccid posture
 • large head with big proportion of blood flow
 • decr central control of T reg
 • less able to compensate with behavioural mechanisms
 • large MV
• response to cold:
• behavioural (crying) ⇒ skin vasoC ⇒ non-shivering thermogenesis (NST) ⇒ ↑ mm activity/movement
 ⇝ 1st few days newborns cannot shiver
• ongoing cold stress ⇒
 - bradycardia
 - apnoea
 - hypoglycaemia
 - met acidosis

• NST =
 - includes (non restricted to) metabolism of brown fat
 - brown fat = specialised fat:
 - multinucleated cells
 - many mitochondria
 - abundant blood supply
 - abundant autonomic nerve supply
 - catecholamines mediate metabolism
 - substrate used mostly = FA’s
 - cold stimuli ⇒ NA release ⇒ uncoupling of oxidative phosphorylation ⇒ ↑ heat production / gram of fat (rather than ATP production)
 - no mechanical work done
 - brown fat found in:
 - abdomen esp perinephritic
 - around large blood vessels
 - interscapular area
 - base of neck
 - brown fat = 2-6% neonate total body weight
 - ↑ brown fat metab redirects CO to brown fat (by ↑~25%) ⇒ direct heating of blood as well
 - NST needs O2 ∴ cold & hypoxia = v bad
 - can double heat production in neonate (in adult has v little effect)

• response to heat:
 - behaviour (crying/remove clothing) ⇒ skin vasoD ⇒ sweating
 - prems - cannot sweat
 - neonates = limited sweat but compensated by large evap heat loss 2nd to ↑ ed BSA

Metabolism
• due to large BSA metabolism and its assoc parameters correlate better with BSA than weight
 ⇝ VO2, VA, CO
Specific Problems of Prematurity

- **Respiratory:**
 - Respiratory distress syndrome (∫ surfactant)
 - Bronchopulmonary displasia ⇒ chronic lung disease
 - Apnoea / periodic breathing
 - Persistant pulmonary HTN

- **CVS:**
 - PDA: premature ductus = less responsive to oxygen (may remain patent)

- **CNS:**
 - Intraventricular haemorrhages
 - Reduced cerebral autoregulation

- **GIT:**
 - GORD
 - NEC (associated with hypoxia)

- **Metabolic:**
 - Prone to hypoglycaemia (low glycogen stores)
 - Hypocalcaemia (immature parathyroid fx + low vit D stores)
 - Jaundice (poor hepatic conjugation + ↑ bilirubin load)

- **Skin:**
 - Fluid losses (thin epidermis, large SA ⇒ ↑ insensible losses)
 - Infection: immature immune system

Vitals Signs

<table>
<thead>
<tr>
<th>age</th>
<th>RR</th>
<th>bp</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>30-40</td>
<td>70-90</td>
<td>110-160</td>
</tr>
<tr>
<td>1-2</td>
<td>25-35</td>
<td>80-95</td>
<td>100-150</td>
</tr>
<tr>
<td>2-5</td>
<td>25-30</td>
<td>80-100</td>
<td>95-140</td>
</tr>
<tr>
<td>5-12</td>
<td>20-25</td>
<td>90-110</td>
<td>80-120</td>
</tr>
<tr>
<td>>12</td>
<td>15-20</td>
<td>100-120</td>
<td>60-100</td>
</tr>
</tbody>
</table>

Systolic bp = 80 + (age x2)

- weight = (age * 2) +9 or (age +4) *2
- calculations of drug doses:
 - <30kg = BWTx2 = % of adult dose
 - >30kg = BWT +30 = % of adult dose