Maternal Physiology

Changes by System

Respiratory
Cardiovascular System
Coagulation
Plasma Proteins
Gastro-Intestinal System
Renal System
Neuro
Metabolic/Endocrine
Anatomical Changes

Anaesthetic Significance of Physiological Changes

Resp
CVS
GIT
Renal
Aorto-Caval Syndrome

Uteroplacental Physiology

Normal Values
Placental Functions
Transplacental Gas Exchange

Pain in Labour

First Stage Labour Pain
2nd Stage Labour Pain
Role of Sensitisation
Maternal Physiology

- pregnancy & ageing = most common altered physiological state which humans subjected to
- significant changes esp in:
 - CVS
 - resp
 - renal
 - endocrine
 - CNS
- pregnant woman also carries fetus with own physiological changes, growths & adaptations

Changes by System

Respiratory
(3rd trimester ⇒ term)
- volumes + capacities:
 - incr in:
 - VT - 40%
 - IC
 - IRV
 - decr in:
 - ERV + RV ⇒ ↓FRC ~25% ⇒ a shunt tendency
 ▼ cause by upwards displacement of diaphragm
 - No change:
 - TLC
 - VC
 - CV
- mechanics:
 - compliance:
 - Compliance lung = norm
 - compliance chest wall = ↓↓significantly
 ▼ overall C_T = slight ↓
 - Diffusing capacity = unchanged
 - Airway resistance:
 - ~unchanged or slight ↑ due to upper airway capillary engorgement
- ventilation:
 - ↑RR ~10%
 - ↑MV ~40% - progesterone influenced
 ▼ end of 3rd trimester to labour - ↓Vt due to mechanical problems. ↑RR to compensate
 - Dead space:
 - physiological = norm
 - alveolar dead space ↓ed (2nd to ↑CO)
 - V_A (alveolar ventilation) ↑70%
 - VO2 ↑20%
- gases:
 - PaO2:
 - 1st trim = ↑7-10mmHg
 - 3rd trim = ↑+/− 3mmHg
 - PaCO2 = ↓ to 30mmHg

By Adam Hollingworth
with low PaCO₂ would expect to see PaO₂ >100mmHg but limited due to ↑ed V/Q mismatch (15% compared to 3% in non pregnant)

- HCO₃ = ↓ to 20mmol/L
- pH 7.44 +/- full compensation
- P₅₀ = ↑s through pregnancy (from norm = 27)
 - 1st trim 27.8
 - 2nd trim = 28.8
 - term = 30mmHg
- due to ↑2,3 DPG ⇒ R shift

DO₂ = ↑10%

Cardiovascular SYstem

- blood:
 - ↑rbc 20%
 - plasma volume ↑45%
- leads to:
 - ↑TBV 48% ⇒ ↓HCT ⇒ enhances flow to uterus, kidney, breast, skin & compensates for loss with delivery
 - similar mechanisms with normovolaemic haemodilution as means to minimise rbc loss
 - dilutional ↓Hb ~120
- heart:
 - ↑SV 30%
 - ↑HR 15%
- ↑CO 30-40% fully developed at end of 2nd trim and continues until birth
- S3 heart sound common
 - systolic murmurs at left sternal edge common
 - diastolic murmurs are not common

(heart Sounds:
- S1 = beginning of systole. mitral/tricuspid forced shut
- S2 (A2, P2) = end of systole = closure of aortic/pulmon valves
- S3 = soon after S2. rapid vent filling after opening of A/V valves. can be norm in preg, athletes, young)
- S4 = before S1. atrial kick of blood into stiff ventricle. pathological)

- vasculature:
 - bp changes at max 2nd trim, then slowly return to norm levels at term
 - ↓SVR 15% ⇒ ↓MAP ~10mmHg
 - due to low resistance uterine circulation + prostaglandin effects on vasc tone
 - SBP ↓10mmHg
 - DBP ↓15-20mmHg ⇒ ↑ed pulse pressure
 - PulmonVR ↓15%
 - CVP & PCWP ~ normal
- CO distribution:
 - Uterine - ↑10% relative flow - mediated by corticotrophin releasing horomine
 - breast ↑2% - doubles through pregnancy
 - kidney, skin, brain, heart = all have ↑absolute flow, but unaltered proportional flow
- @ labour:
 - in 3rd stage labour CO ↑ed by 80% above pre labour values
- ECG:
• left axis dev
• T wave inversion III
• down sloping ST depression
• low voltage QRS

Coagulation
• accelerated but compensated IV coagulability:
 • ↑factors 1 (fibrinogen may double), 7,8,9,10,12
 • ↓factor 13 and antithrombin-3
 • ↑fibrinolytic system -
 - this returns to normal post partum ⇒ hypercoagulable state immediate post partum
 • placental separation activates clotting
 • ↓platelets ~20%

Plasma Proteins
• total plasma proteins ↓ from 70 ⇒ 60g/L - mostly 2nd to ↓albumin concentration
• ↓plasma oncotic pressure: 288 ⇒ 277 = ↑risk of oedema formation (incl early post partum
• ↓plasma cholinesterase activity by 30% - not clinically important

Gastro-Intestinal System
• ↑propensity for passive regurg/reflux/heartburn:
 • stomach up & rotated 45deg to R
 • pylorus up
 • LES up - into thoracic cavity
 • ↑intragastric pressure
 • labour slows gastric emptying, THEN further slowed again with narcotics
 ⇝ via progesterone & ↓motilin level ⇒ ↓oesophageal & GIT peristalsis
 ⇝ although is some conflicting evidence - uncomplicated preg may have norm gastric emptying
 • ↑volume gastric contents & ↓pH - ↑gastrin secretion from placenta

Renal System
• ↑size of kidney - pelvis
• ↑size of ureters
• flows:
 • RPF ↑80%
 • GFR ↑50%
 ⇝ ⇒ ↓filtration fraction
• ↑glucose filtered (2nd to ↑GFR) ⇒ can exceed T_{max} Gluc ⇒ glucosuria
• ↑UTI incidence
• urea, creatinine, uric acid are ↓ed in preg ↓: a normal or slightly higher level may indicate significant ↓in renal function

Neuro
• ↓MAC - due to progesterone depressive effect on CNS
 • ↓40% for iso
 • ↓25% halothane
• Neuraxial blocks = need ↓25-30% dosing of LAs:
 • ↓volume of CSF
 • ↓volume epidural space
• ↑ sensitivity to LA’s

Metabolic/Endocrine

- ↑ VO2 ~20% → ↑ VO2 100% in active labour
- incr in CO > incr in VO2: A-V O2 difference ↓ by 25% → ↑ ed O2 returned to heart
 \[\Rightarrow \text{slight drop in Hb not of great importance}\]
- pregnancy = diabetogenic - due to relative insulin resistance
 - ↑ insulin secretion
 - ↑ human chorionic somatotrophin = ↑ ed insulin resistance
 \[\Rightarrow \text{HCS} \sim \text{GH} \text{ ie anti-insulin}\]
- thyroid hypertrophy 2nd to HCG + oestrogens
 - ↑ TBG
 - ↑ total T3/T4
 - but free T3/T4 & TSH = normal
- parathyroid:
 - ↑ PTH ⇒ ↑ vit D ⇒ +ve Calcium effects
 \[\Rightarrow \text{but see norm serum Ca - excess goes to foetus}\]
- pituitary:
 - ↑ ACTH ⇒ ↑ cortisol, ↑ aldosterone
 - ↑ prolactin
 - ↑ MSH
 - ↑ B-endorphin
- other:
 - ↑ oestrogen
 - ↑ progesterone

Anatomical Changes

- physical effects include:
 - engorgement of epidural veins: uterine enlargement ⇒ vena caval compression
 \[\Rightarrow \text{↑ ed risk of IV cannulation}\]
 - engorged vertebral foraminal veins:
 - contiguous with epidural veins
 - leads to ↑ length of action of epidural LA
 \[\Rightarrow \text{one of pathways for egress of anaesthetic agent from epidural space}\]
- ↓ ed CSF in thoracolumbar region:
 - caused by:
 - enlarged epidural veins
 - ↑ ed intrabdo pressure of pregnancy
 - explains need for ↓ ed dose in spinals
- progressive ↑ of lumbar lordosis:
 - causes changes:
 - pelvis rotates on long axis of spine (ant pelvic tilt) ⇒
 \[\text{• Tuffer’s line (intercrest line) slightly higher due to ↓ ed flexion of Lx spine}\]
 \[\text{ie may be L3-4 interspace rather then L4-5}\]
 - ↓ ed space between adjacent Lx spinous processes ⇒ difficulty using midline approach
 - apex of Lx lordosis shifted caudad with ↓ ed Tx kyphosis - influence spread of intrathecal solutions
 - labour pain makes it harder to assume ideal position for performing technique
hormonal effects include:
 - softening of ligaments:
 - esp ligamentum flavum - more difficult to feel needle move through
 - ↓specific gravity of CSF ⇒ ↓ed dose required for spinal

Anaesthetic Significance of Physiological Changes

Resp
- difficult airways:
 - x8 ↑: 0.05 to 0.4%
 - obese
 - large engorged breasts
 - short neck
 - larynx slightly cephalad +/- ant angulated
 - swollen mucosa - worse in pre-eclampsia - use smaller ETT/avoid nasal
- ↑hypoxia risk:
 - ↓FRC & ↑VO₂
 - thus ↑chance of DI and ↑hypoxia risk ⇒ ↑↑risk GA dramatically
- anaesthetic changes:
 - ↓MAC - ?progesterone
 - faster induction with
 - insoluble volatiles: ↓FRC
 - soluble volatiles: ↑V_A
 - pre-oxygenation shorter due to smaller FRC ie ~3mins or 3-5 VC breaths
- hyperventilation:
 - avoid as PaCO <24mmHg ⇒ ↓uterine perfusion

CVS
- healthy term pt will tolerate up to 1.5L blood loss
- CO remains high 1st few hrs post partum (up to 80% > prelabour)
 - impt in preg pts with cardiac lesions eg valves, LVOT obstruction
- if norm Hb seen must think low volume state:
 - pre-eclampsia
 - HTN
 - diuretics
- venodilation +/- ⇒ ↑incidence accidental epidural vein puncture
- oxytocin & 5% dex +/- ⇒ fluid overload
- maternal bp <90 systolic with neuraxial technique = concern
 - ↓placental perfusion as system not autoregulated

GIT
- ↑aspiration risk in GA:
 - pain/opioids/emotional stress ⇒ delayed gastric emptying
 - hormonal effects: progesterone ⇒ ↑gastrin, ↓motilin
mass effects: ↑intra-gastric pressure, distortion of LES angle/position
\[\therefore\] full stomach precautions from 19/40 ⇒ 48hrs post partum

Renal

- normal or slight high levels of creat/urea ⇒ likely significant renal impairment

Aorto-Caval Syndrome

- supine gravid uterus ⇒ IVC compression
 - only in 15% pts due to
 - collateral flows: paravertebral, azygous, ovarian veins
 - baro-reflexs - needing intact sympathetic n.s.
 - see:
 - initially: dramatic ↓venous return
 - then: ↑afterload ⇒ further ↓CO
- usually problem of late pregnancy but can see earlier:
 - multiple pregnancies
 - polyhydraminos
 - obesity
- signs:
 - early: anxiety, sweating, nausea
 - late: profound hypotension
- Rx:
 - prevent ie no mother with regional should be allowed supine
 - OT: tilt 15deg L or use wedge
Uteroplacental Physiology

- diffusion barrier = 3.5um (vs 0.5um of lung)
- surface area = 16m2 (vs 50-60 m2 in lung)
- foetus needs high DO$_2$ to grow which met by:
 - ↑ uterine art flow = ↑ed to 600ml/min near term (x20↑)
 - HbF -
 - ↑O2 affinity (P50 = 18mmHg)
 - 2α,2γ
 - @bith = 80% of Hb; @6months <5%)
 - foetus has ↑ed Hb ~17g/dl
 - double Bohr effect

- DO$_2$ Plac = CaO$_2$ x QUA
- QUA = UPP/UVR
- where UPP = UAP – UVP

- absolute uterine blood flow↑ by x20 during pregnancy
- during pregnancy ↑ o2 extraction from uterine blood ⇒ ↓SvO2 uterine venous blood

- uterine flow = directly pressure dependant:
 - uterine vessels without stimulation = max vasodilated
 - (↓ but can vasoC to external factors eg SNS, catecholamines, hypocarbia)
 - not autoregulated
- ∴ drop in MAP is poorly tolerated compared to regions with autoregulation ie coronary, brain
Normal Values
(arteries (uterine or umbilical) always flow towards uterus, veins always away from it)

- **maternal circulation:**
 - Uterine A.
 - Uterine V.
 - Umbilical A.
 - Umbilical V.

<table>
<thead>
<tr>
<th></th>
<th>Uterine A.</th>
<th>Uterine V.</th>
<th>Umbilical A.</th>
<th>Umbilical V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2</td>
<td>100</td>
<td>40</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>PaCO2</td>
<td>30</td>
<td>45</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>SO2</td>
<td>98</td>
<td>75</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>p50</td>
<td>26</td>
<td>18</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>CaO2</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>CaCO2</td>
<td>48</td>
<td>52</td>
<td>44</td>
<td>37</td>
</tr>
</tbody>
</table>

- Uterine artery:
 - blood flow 600ml/min
- Umbilical artery:
 - blood flow back to placenta ~300ml/min

Placental Functions
(TIME = transport, Immunologic, Metabolic, endocrine)

Transport
(see next page - transplacental gas exchange)
- oxygen - double Bohr effect seen:
 - maternal side: maternal blood gains CO2 \Rightarrow ↓pH \Rightarrow R shift curve \Rightarrow ↑O2 release
 - foetal side: CO2 is lost \Rightarrow ↑pH \Rightarrow L shift curve \Rightarrow ↑O2 uptake
- CO2:
 - maternal hypervent \Rightarrow ↑ed gradient for CO2 diffusion from foetus \Rightarrow mum
 - double Haldane effect:
 - maternal side: blood deoxygenated \Rightarrow ↑CO2 carrying capacity
 - foetal side: blood oxygenated \Rightarrow ↑unloading of CO2
- delivery of nutrients ie glucose, aa’s, lipids
- waste removal - urea, bilirubin
- water + electrolyte delivery/exchange
- heat transfer:
 - foetus = 1deg warmer than mum
 - ↑heat returned to maternal circ \Rightarrow ↑maternal skin flow

Immunologic
- protects foetus from infection:
 - IgG Antibodies only class able to cross placenta
 \Rightarrow provide immunity for few months post birth
- protects foetus from rejection by mother

Metabolic
- produces:
Endocrine
- produces:
 - HCG (human chorionic gonadotropin)
 - maintains corpus luteum in early preg
 - Human placental lactogen (hPL), also called human chorionic somatomammotropin (HCS):
 - ~ GH
 - imp in regulating glucose availability for foetus by altering maternal CHO, protein, fat metab
 - insulin antagonist
 - stims erythropoiesis
 - oestriol
 - progesterone:
 - made by corpus luteum in 1st trim
 - then by placenta rest of preg
 - other: gastrin, somatomedin, human chorionic thyrotropin, placental corticotrophin

Transplacental Gas Exchange
- Bohr effect = an ↑ in PaCO2 will ↓ affinity of Hb for O2 (ie a R shift of OHDC) and vice versa
- Haldane Effect = as Hb is deoxygenated, its affinity for CO2 ↑s and vice versa

Explanation
- Ficks Law of diffusion: O2 & Co2 diffuse along their concentration gradients across the placental barrier ie O2 mother ⇒ fetus; CO2 fetus ⇒ mother:
 - area 16m2
 - diffusion constant D
 - conc gradients - as above & note mat hyperventilation
 - thickness of placental barrier 3.5um
- diffusion gradient for Co2 foetus ⇒ mother is ↑ed by maternal hyperventilation (mat PaCo2 = 30mmHg)
- diffusive transfer is enhanced by double Bohr & Double Haldane effects
 - double Bohr effect seen:
 - maternal side: maternal blood gains CO2 ⇒ ↓pH ⇒ R shift curve ⇒ ↑O2 release
 - foetal side: CO2 is lost ⇒ ↑pH ⇒ L shift curve ⇒ ↑O2 uptake
- double Haldane effect:
 - maternal side: blood deoxygenated \Rightarrow ↑CO2 carrying capacity
 - foetal side: blood oxygenated \Rightarrow ↑unloading of CO2

- other factors influencing gas exchange:
 - high foetal Hb conc = 170
 - high affinity of HbF for O2 (p50 18mmHg)

By Adam Hollingworth

Maternal Physiology - 12

Pain in Labour

First Stage Labour Pain

• pain via afferents from:
 - cervix
 - lower uterine segment
 - (not uterine body:
 - needs co inflammation eg chronic pain
 - pregnancy ⇒ ↓ afferents from here downregulate)
• ∴ do not feel pain from uterine distension
• cervix innervation = dual (∴ chance of referred pain):
 - endocervix & lower uterine segment (1st stage)
 - = nerve cell bodies in thoracolumbar dorsal root ganglion (DRG) T10-L1
 - vaginal cervix & upper vagina (2nd & 3rd stage only)
 - = nerve cell bodies in sacral DRG
 - C fibres
 - innervation pattern not affected by pregnancy
 - mediators incl substance P & CGRP
• 1st stage pain afferent pathway:
 - C fibres
 - paracervical region
 - hypogastric nerve & plexus
 - lumbar sympathetic chain
 - T10-L1 DRG nerve cells
 - visceral C fibre termination:
 - enter in dorsal horn
 - terminate in loose network of fibres in deep dorsal & ventral horns
 ⇐ including crossing midline to contralat side
 ⇐ explains non specific localisation of visceral pain
 - ascending tracts:
 - contralat ant spinothalamic tract ⇒ somatosensory cortex
 - spinoreticular & spinomesencephalic tract ⇒
 - areas of vigilance (reticular formation)
 - cardioresp centre (NTS, caudal medulla)
 - reflex descending inhibition (PAG, nucleus raphe magnus, cerebellum)
• (somatic afferents = localised pain: traditional C & A-delta somatic afferents enter dorsal horn &
 terminate in ipsilateral lamina I & II)
• diffuse termination explain why for visceral pain intrathecal fentanyl > morphine
 ⇐ ↑ed lipophilic ∴ can penetrate deeper into cord connections
• ∴ to achieve pain relief:
 - peripheral blockade ⇒
 - paracervical,
 - paravertebral sympathetic nerve,
 - epidural T10-L1
 - spinal cord blockade
 - should use lipophilic drug to enable deep penetration
2nd Stage Labour Pain

- same as 1st but with additional afferents from:
 - cervix (vaginal surface - as described above)
 - vagina
 - perineum
- afferents are somatic:
 - via pudenal nerve DRG (S2-S4)
- pain caused by:
 - distension
 - ischaemia
 - frank injury - stretching or surgical incision
- ∴ to achieve pain relief:
 - as stage 1
 - extension of epidural blockade T10-S4
 - pudendal nerve block

Role of Sensitisation

- amplification of pain signalling seen in labour
- cervical ripening associated & labour itself due to local inflam products
- long term oestrogen exposure ⇒ ↑sensitivity of nociceptors
- ∴ effect of periph sensitisation of cervical afferents:
 - Braxton Hicks contractions - prior to onset of labour inflam process may be as powerful as labour contractions but are painless
 - pain may ↑ with progress through process of labour due to sensitisation
 - inflam mediators may provide new targets for pain control