Table of Contents

Immunology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology</td>
<td>1</td>
</tr>
<tr>
<td>Immunity</td>
<td>2</td>
</tr>
<tr>
<td>Innate Immunity</td>
<td>2</td>
</tr>
<tr>
<td>- Soluble Factors of Innate Immune System</td>
<td>2</td>
</tr>
<tr>
<td>- Cellular Factors of Innate Immune System</td>
<td>3</td>
</tr>
<tr>
<td>Complement</td>
<td>4</td>
</tr>
<tr>
<td>Adaptive Immunity</td>
<td>6</td>
</tr>
<tr>
<td>- Subclassification of Adaptive Immunity</td>
<td>6</td>
</tr>
<tr>
<td>- B lymphocytes</td>
<td>6</td>
</tr>
<tr>
<td>- T lymphocytes</td>
<td>7</td>
</tr>
<tr>
<td>- Soluble Factors of Adaptive System</td>
<td>8</td>
</tr>
<tr>
<td>- Immunoglobulins (Ig)</td>
<td>8</td>
</tr>
<tr>
<td>- Tumor Necrosis Factor (TNF-α)</td>
<td>10</td>
</tr>
<tr>
<td>- Cytokines</td>
<td>10</td>
</tr>
<tr>
<td>- Interferons</td>
<td>11</td>
</tr>
<tr>
<td>- Cellular Factors of Adaptive System</td>
<td>11</td>
</tr>
<tr>
<td>- Macrophages</td>
<td>11</td>
</tr>
<tr>
<td>- T-Lymphocytes</td>
<td>12</td>
</tr>
<tr>
<td>- B Lymphocytes</td>
<td>12</td>
</tr>
<tr>
<td>- Dendritic Cells</td>
<td>12</td>
</tr>
<tr>
<td>Overview of Immune Response</td>
<td>12</td>
</tr>
<tr>
<td>- Factors Determining Immune Response</td>
<td>12</td>
</tr>
<tr>
<td>- Primary Response</td>
<td>13</td>
</tr>
<tr>
<td>- Secondary Response</td>
<td>13</td>
</tr>
<tr>
<td>- Tolerance</td>
<td>13</td>
</tr>
<tr>
<td>Anaesthesia on Immune Functions</td>
<td>13</td>
</tr>
<tr>
<td>Histocompatibility Molecules</td>
<td>13</td>
</tr>
<tr>
<td>Systemic Inflammatory Response Syndrome</td>
<td>14</td>
</tr>
<tr>
<td>- Definitions</td>
<td>14</td>
</tr>
<tr>
<td>- Causes</td>
<td>14</td>
</tr>
<tr>
<td>- Pathophysiology</td>
<td>15</td>
</tr>
<tr>
<td>Hypersensitivity Reactions</td>
<td>17</td>
</tr>
<tr>
<td>- Classifications</td>
<td>17</td>
</tr>
<tr>
<td>- Type I (immediate) Hypersensitivity</td>
<td>18</td>
</tr>
<tr>
<td>- Type II (Antibody Mediated) Hypersensitivity</td>
<td>21</td>
</tr>
<tr>
<td>- Type III (Immune Complex-Mediated) Hypersensitivity</td>
<td>22</td>
</tr>
<tr>
<td>- Type IV (cell mediated) Hypersensitivity</td>
<td>23</td>
</tr>
<tr>
<td>- Delayed Type Hypersensitivity</td>
<td>24</td>
</tr>
<tr>
<td>- T Cell Mediated Cytotoxicity</td>
<td>25</td>
</tr>
<tr>
<td>Transplant Rejection</td>
<td>26</td>
</tr>
<tr>
<td>- Recognising Allografts – (Sensitisation Phase)</td>
<td>26</td>
</tr>
<tr>
<td>- Graft Destruction Phase</td>
<td>27</td>
</tr>
<tr>
<td>- Types of Rejection</td>
<td>27</td>
</tr>
<tr>
<td>- Transplant Haematopoietic Cells</td>
<td>28</td>
</tr>
</tbody>
</table>

By Adam Hollingworth
Immunity

- **Innate** =
 - mechanisms present & already synthesised prior to infection
 - physical, biochemical & cellular factors (limited)
 - static resistance, no memory
 - specifically good at working against microbes

- **Adaptive (aka acquired):**
 - microbes stimulate mechanisms which are capable of recognising non-microbial substances eg antigens
 - more powerful, 2nd line defense
 - memory, with subsequent enhanced response
 - immune response refers to adaptive

Innate Immunity

- 1st line defence
- main components:
 - Physical defences:
 - epithelial barriers
 - commensural flora, gastric fluid acidity, fever, lung surfactant
 - biochemical defences:
 - soluble factors:
 - lysosomes
 - acute phase reactants eg CRP
 - complement
 - fibronectin
 - interferon
 - cellular:
 - phagocytic cells eg neutrophil & MPs
 - NK (natural killer) cells

Soluble Factors of Innate Immune System

1. **Lysozymes**
 - Distributed widely in many secretions
 - Act by cleaving bacterial cell wall proteoglycans

2. **Fibronectin**
 - Family of closely related glycoproteins
 - Synthesised by endothelial cells & fibroblasts
 - Actions:
 - Non specific opsonisation
 - Facilitation of phagocytosis
 - Wound healing & tissue repair
 - Levels ↓ed by: major burns, surgery, trauma, DIC

3. **Complement**
 - see separate section below

4. **Interferons**
 - From virally infected cells & malignant cells
 - Transmit information to adjacent cells
 - Activate NK cells ⇒ ↑cytotoxic action
5. Acute Phase Reactants

• Eg CRP:
 o Recognises & binds wide variety of bacteria & fungi
 o Acts as an opsonin ie ↑phagocytosis & complements action

Cellular Factors of Innate System

Natural Killer Cells

• ≈10-15% blood lymphocytes
• non thymic
• aka large granular lymphocytes
• don’t have TLRs (no antigenic surface markers of T/B cells)
• part of innate immune system – but are regulated by T cells . also role in adaptive immunity
• Different cytokines/interferons regulate NK cells – proliferate or kill
• role to kill with no presensitisation:
 o tumour cells
 o virally infected cells
 o some normal cells
• activity mediated by balance of activating & inhibitory receptors:
 o inhibition by recognition of self class I MHC molecules
 o killer inhibitory receptors
• all nucleated normal cells express class I MHC
 o virally infected cells ↓s expression of class I MHC ⇒ NK cell lysis (in conjunction with activating receptors
• NKs also secrete cytokines:
 o IFN-γ ⇒
 ▪ activate macrophage
 ▪ differentiate CD4+ cells ⇒ T_{H1} cells
 o TNF
 o Granulocyte macrophage colong stim factor (GM-CSF)

Neutrophils

• 80-90% of circulating polymorphs
• contain: lysozymes, phagosomes, ingested organisms, phagolysozomes
• are able to penetrate endothelial surface under influence of chemotactic factors

Eosinophils

• can phagocytose
• can degranulate adjacent large foreign bodies (which too large for phagocytosis) eg worms
• attracted by eosinophil chemotactic factor
• attach to Ig’s & foreign particles
• release:
 o major basic protein
 o eosinophil cationic protein
 o anti-inflam enzymes
• may have role in immune down regulation

Basophils & Mast Cells

• limited no in circulation
• predominantly assoc with epithelial cells esp mast cells
• may play role in immunity to parasitic infections ie ↑ed response

Phagocytes

• Phagocytes recruited to site of infection ⇒ inflam
• Phagocytes recognise microbes by receptors for:
 o mannose residues
 o not produced by host cells

Immunology - 3

By Adam Hollingworth
N-formyl methionine containing peptides
- Toll like receptors

Examples of cells:
- Macrophages in alveolar, splenic, lymph node, kidney
- Blood monocytes
- Brain microglia
- Hepatic Kupffer cells
- Synovial A cells

Complement

- Series ~25 plasma proteins made in liver
- Present as inactive forms C1-C9
- Activated to become proteases that cleave each other in an amplifying cascade
- Key step = activation of C3
- C3 & C5 are most important mediators
 \[\text{can also be activated by proteolytic enzymes within exudate eg plasmin & lysosomal enzyme from neutrophils} \]

Activation

- Pathways to activate C3:
 - Classical:
 - Antibody-antigen interaction (IgG & IgM)
 - Part of adaptive immune system
 - C1 fixes to antigen-antibody complexes ➔ C3 convertase
 - Alternative:
 - Triggered by
 - Microbial surface molecules (eg endotoxin) &
 - Complex polysaccharides
 - Part of innate system
 - Lectin:
 - Plasma mannose binding lectin binds to microbe carbohydrate ➔ activates C1
 - Innate system

Effector Functions

- Cell lysis of bacteria (MAC):
 - C5b binds components of C6-9 ➔ membrane attack complex (MAC)
- Inflammatory functions (C3a, C5a):
 - Degranulation of mast cells ➔ histamine release ➔ VD & ↑permeability
 - Neutrophil aggregation
 - Stim arachidonate metabolism
 - Chemotaxis
- Opsonisation (C3b): opsonin = binding enhancer for phagocytosis ➔ ↑phagocytosis

Regulation

- Complement activation regulated by
 - Cell associated proteins eg DAF (decay accelerating factor)
 - Defect ➔ paroxysmal nocturnal haemoglobinuria (=rbc lysis & anaemia)
 - Circulating proteins eg C1 inhibitor
 - Deficiency ➔ hereditary angioneurotic oedema (=episodic oedema)
Adaptive Immunity

- 2nd line
- activated once innate system penetrated or overwhelmed
- specific against infective agent
- predominant mediated by lymphocytes & their products eg antibodies
- lymphocyte receptors much more diverse than innate immunity
 \(\Rightarrow \): capable recognising many foreign substances
- has soluble & cellular factors

Subclassification of Adaptive immunity

- 2 main subclassifications:
 - cell mediated (cellular) –
 - T (thymus derived) lymphocytes
 - Ig’s play a minor role
 - Impt in host defence against:
 - TB, fungi, protozoans
 - Viruses, intracellular organisms
 - Tumour cells, allografts
 - humoral –
 - defense of extracellular microbes & toxins
 - B (bone marrow) lymphocytes and their secreted antibodies

\begin{figure}
\centering
\includegraphics[width=\textwidth]{immunology_diagram.png}
\caption{Diagram of the adaptive immune system showing B lymphocytes, CD4+ helper T lymphocytes, and CD8+ cytotoxic T lymphocytes.}
\end{figure}

B lymphocytes

- Found:
 - Blood – ~10% circulating lymphocyte popn
~50% splenic lymphocyte popn
also seen other lymphoid tissue ie nodes, tonsils
~75% bone marrow lymphocyte popn
• differentiate in 3rd trimester in utero + neonatal period
• Recognise antigen via B-cell antigen receptor complex
 made by IgM & IgD present on B cell surface
• Other surface molecules essential for function:
 o Fc receptors
 o CD40
 o Complement component - CD21
 also EBV receptor ∴ EBV infects B cells
• Each B cell complex has unique antigen specificity

B cell Activation
• 2 methods of activation:
 o thymus independent ⇒ IgM only
 o thymus dependant:
 ▪ Require help from CD4+ T cells
 ▪ CD4+ binds CD40 on B cell
 ▪ Capable of producing all types of Ig
• Different cytokines stim B cells to clonally expand & differentiate (activate):
 o Plasma cells
 o Memory cells
• Plasma cells =
 o Specific antibody secreting cells eg IgG, IgA, IgE ie 1 class only
 o May reside in
 ▪ lymphoid organs
 ▪ mucosal tissues
 ▪ bone marrow – may live many years
• Memory cells:
 o Can become plasma cells with a repeat challenge
 ▪ Ig-Fab portion attaching specific antigen
 ▪ Ag presented + pre-processed by macrophages
 ▪ Modulatory signals from other cells esp T4 cells
• Antibodies mobilise to area of foreign material

T Lymphocytes
• Originate in bone marrow ⇒ migrate to thymus late in utero/early neonatal
• Maturation regulated by thymopoietin
• = main effectors of cell mediated immunity
• Mature, naïve T cells found:
 o circulating – 70-80% of lymphocytes = T lymphocytes
 o T cell zones eg
 ▪ Lymphatics ~90% lymphocytes in ductus thoracicus
 ▪ Deep cortical areas of lymph nodes
 ▪ periarteriolar white matter of spleen
• each T cell genetically programmed to recognise specific cell bound antigen
 by a Tcell receptor (TCR)
• antigen presenting cell (APC):
 o processes antigens on infected cells
 o presents antigen to T lymphocyte TCRs
 by major histocompatibility complex (MHC) molecules
• T cells cannot be activated by soluble antigens.
 ↩ Need antigen to be presented by MHC on APC
• TCRs are capable of recognising many antigens
 ↩ BUT MOSTLY T cell expresses one type of TCR
• Variety in TCRs occur in thymus from germ line from embryo
 ↩ lymphoid malignancies classified into polyclonal (non neoplastic) & monoclonal (neoplastic)

T cell proliferations

CD Molecules
• = accessory molecules
• co-receptors in T cell activation
• CD4 molecules ⇒ class II MHC
• CD8 ⇒ class I MHC

T cell Activation
• T cells need 2 signals to activate:
 o 1 = TCR, antigen-MHC, & CD4/8 binding
 o 2= CD28-T cell binding
• T cell activation ⇒ secrete local cytokines eg IL2
• IL2 ⇒ proliferation of T cell numbers
• Differentiation of activated T cells:
 o Effector cells
 o Memory cells

T Cell Effector Cells
• Examples & function:
 o CD4+ (65% in circ):
 ▪ Orchestrator of cellular immunity via cytokine release
 ▪ Sub category:
 • T\textsubscript{H}1 = Synthesises IL2 & IFN-y which:
 o Facilitate delayed hypersensitivity
 o MP activation
 o Opsonising & complement ficed antibodies
 • T\textsubscript{H}2 = synthesises IL4, IL5, IL13 which involved in:
 o IgE synthesis
 o Activation of eosinophils
 • MHC class II ONLY
 o CD8+ (25% in circ):
 ▪ Cytotoxic cells
 ▪ Secrete cytokines
 ▪ Virus killins
 ▪ MHC Class I ONLY

Soluble Factors of Adaptive System
• Immunoglobulins
• Cytokines
• TNF
• Interferons

Immunoglobulins (Ig)
• Main action is antigen recognition ⇒ outcome determination
• Different regions on Ig structure:
 o Fraction antigen binding (Fab) =
 ▪ highly variable area between diff Ig’s
- determines specificity
 - fraction crystalline (Fc) =
 - determines what occurs once Ig-Ag interaction has occurred

Types of Igs

- **IgG (76%)**:
 - Most abundant & broadest role
 - 4 subclasses:
 - IgG1 + IgG3 ⇒ *activate complement*
 - IgG2 + IgG4 ⇒ are Ig receptors on macrophages / phagocytes
 - Can cross placenta –
 - Deliver immunity for neonate
 - Rh incompatibility
- **IgA (16%)**:
 - Main Ig in secretions eg resp, GIT, urinary tract, saliva, colostrums
 - Monomer in serum, dimmer in secretions (joined by J chain)
 - Storage:
 - taken up by epithelial cells
 - secretory piece added ↳ resistant to enzyme degradation
 - congen IgA deficiency
 - ~1:900.
 - More common in Caucasians
 - Resp infections more common
 - Plasma expression of anti-IgA ~20-60%
- **IgM (7%)**
 - Occurs mainly in circulating volume
 - Part of early immune response ie IgM ⇒ then IgG after
 - IgM = thymus independent antibodies
 - all other Ig types = thymus dependant
 - = a pentamer. Capable of forming spont pentamers
 - ~10% circulating Ig
 - major class of Antibody involved in ABO, Rh, cold agglutinins
- **IgD**:
 - Mainly IV on surface of resting B cells with IgM
 - Impt in B cell antigen binding & activation to plasma cells
- **IgE (1%)**:

![Diagram](image)

Fab = Antigen binding
Fc = effect site ie MP & complement binding
o Hypersensitivity role eg type I: mast cells via Fc fragment
o Antigen must cross link 2 IgE’s to start degranulation

Tumor Necrosis Factor (TNF-α)
- Aka cachectin
- = macrophage produced polypeptide hormone
- effects:
 o IL-1 release from monocytes & endothelial cells
 o Fever inducing via direct effects on hypothalamus
 o Enhances granulocyte adhesions & phagocytosis
 o Directly toxic to endothelial cells ⇒ DIC, ARDS, ARF, gut ischaemia
- Most potent stimulant to ↑TNFα = endotoxin
- Related TNF-β produced by T lymphocytes following specific antigen challenge

Cytokines
- = hormone like chemical messengers which affect immune response ie immunoregulatory
- Many cytokines produced by many cell types eg lymphocytes, monocytes, macrophages, glial cells, neurons
- Cytokine secreted by lymphocyte = lymphokine
- Cytokine = generic name; once aa sequence known they are called interleukins
- IL1-10 = lymphokines & monokines which influence other lymphocytes
- React with specific cell surface receptors & are active at low concentrations
- Any cytokine can act on many cell types and mediate many different actions
- Methods of effect:
 o Autocrine – acts on self
 - eg IL2 from antigen stimulated T cell stims growth of same cell
 o Paracrine – acts on cells close by
 - eg IL7 from bone marrow promotes maturation of B cell progenitors
 o Endocrine – acts on systemic cells
 - eg IL1 & TNF ⇒ acute phase response
- Functional classes:
 o Mediate innate immunity – eg IL-1, TNF
 o Regulate lymphocyte growth, activation & differentiation – eg
 - IL2 – growth factor T cells
 - IL4 – stim CD4+ ⇒ T_{H2} pathway,
 - IL12 – stim CD4+ ⇒ T_{H1} pathway
 - IL15 – growth & activity NK cells
 o Activate inflam cells eg
 - IFN-y – activate MPs
 - IL5 – activated eosinophils
 - TNF
 o Chemokines:
 - CC – from T cells
 - CXC – from MPs
 o Stim haematopoesis:
 - Colony stimulating factors eg GM-CSF & G-CSF
 - act on committed progenitor cells

IL1
- Polypeptide produced by monocytes + tissue macrophages
- Cause wide variety of inflam stimuli:
o Fever
o ↑skeletal mm catabolism
o slow wave sleep
o bone marrow release of neutrophils
o T cell + neutrophil chemotaxis
o CD4+ mediated production of IL-2
o B cell proliferation & Antibody production
o ↑hepatic production of acute phase reactants
o ↓production of albumin, prealbumin & transferrin

IL2
- polypeptide growth factor
- stim prolif of:
 - activated B cell
 - T cells
 - NK cells

Interferons
- Interferons – little use clinically in management of viral infections except:
 - α interferon –
 - chronic hep B &C
 - cytotoxic agent in hairy cell leukaemia, CML, HIV
 - γ interferon – in wound sepsis
- α interferon:
 - >17 subtypes
 - secreted by blood mononuclear cells
 - effects:
 - antiviral effects
 - induction of class 1 MHC on all somatic cells
 - activation of MPs & NK cells
- β interferon:
 - secreted by fibroblasts + epithelial cells
 - similar function to α interferon
- γ interferon:
 - secreted by lymphoid cells
 - effects as α & β but also:
 - class 2 MHC expression
 - ↑cell mediated immunity

Cellular Factors of Adaptive System

Macrophages
- Role in inducing immune system
 - MPs phagocytose microbe
 - process & present antigens to T cells – an APC
 - opsonise
- imp effector cells eg in delayed hypersensitivity reaction:
 - MPs activated by cytokines ⇒ ↑microbicidal properties ⇒ ↑killing tumor cells
 - eg IFN-γ from CD4+ cells
- (Also imp effectors in humoral immunity:
 - Opsonisation of microbe by IgG or C3b ⇒ phagocytosis)
T-Lymphocytes
• See prev
• Principle effector cell

B Lymphocytes
• See above
• Cellular components with soluble product

Dendritic Cells
• 2types:
 o dendritic cells:
 • Important in initiating primary immune responses
 • Key role in antigen presentation because:
 o Located at site of microbe entry eg epithelium
 ▲Langerhans cells =immature dendritic in epidermis
 o Express cellular immunity receptors eg TLRs, mannose receptors
 o have same chemokine receptor as T cells – drawn to Tcell zones
 o high levels of MHC II molecules
 ▲all mechanisms required to present antigen to & activate CD4+
 o follicular dendritic cells
 ▪ Fc – IgG, and C3b receptors
 ▪ Present antigens to B cells

Overview of Immune Response
• Immunogen = something which initiates an immune response
• Immunogenicity = ability to produce an immune response
• Antigen = substance reacting with either available antibodies or sensitised lymphocytes
• Hapten = smaller molecules (<1kD mw) which cannot induce an immune response by themselves but can do if combined with a carrier molecule

Factors Determining Immune Response
• Route of entry
• Dose – v high or low levels may induce tolerance
• Genetic factors:
 o Response to given immunogen
 o MHC gene locus
 o Genes code for initiation, stimulation, suppression
• Cell cooperation:
 o Thymus dependant/independent immunogen
• Other factors:
 o Foreign surfaces
 o Coexisting infection or disease of immune system
 o Fever
 o Nutritional status of host
 o Immunomodulatory agents administered to host
Primary Response

- Thymus dependant:
 - IgM – 1st to appear – peak at 2 weeks
 - Then switch IgM ⇒ IgG/IgA/IgE
 - Requires T cell cooperation
- Thymus independent:
 - IgM only Antibody to appear

Secondary Response

- Occurs within 4-5 days
- Marked proliferation of antibodies & effector T cells
- Antibody is usually IgG – more specific
- Requires immunological memory in both T & B cells
 - ie prev exposure to same pathogen

Tolerance

- = physiological process producing immunological unresponsiveness to an immunogenic substance
- need to inhibit adaptive immune system (humoral & cell mediated)
- depends on both dose & presentation:
 - high dose produces tolerance in T & B cells
 - low dose produces tolerance in T cells only
- requires repeat exposure
- easier to produce in neonate than adult

Anaesthesia on Immune Functions

- anaesthesia causes reversible depression of immune function
- features:
 - physico-chemical barriers impaired during & after anaesthesia
 - ↓ tracheal ciliary activity
 - depression of phagocytosis – proportional to degree of surg stress
 - ↓ ed adaptive immunity post op:
 - surg stress response ⇒ ↑ cortisol ⇒ depressed lymphocyte function
 - ↓ T lymphocyte numbers & ↓ activity
 - NK cells – biphasic response:
 - Initial rapid ↑ numbers by recruitment from extravascular space, lymph nodes & spleen
 - Post op: ↓ ed activity due to supressor monocytes

Histocompatibility Molecules

- Primary function of cell surface histocompatibility molecules is to bind peptide fragments of foreign proteins and present them to antigen specific T cells
- In Humans most impt ones on chromosome 6
 - = MHC or human leukocyte antigen (HLA) complex
- In humans the major histocompatibility antigens = HLA’s
- HLA’s are found on surface of all nucleated cells
- Each human inherits one set of alleles of MHC gene
- MHC class 1 & II = cell surface glycoprotein involved in antigen presentation
• MHC Class III = encode components of complement system

MHC class 1
• Found on all nucleated cells & platelets
• Encoded by HLA-1, HLA-B, HLA-C
• Bind peptides derived from proteins eg viral antigens
• CD8+ interactions only
 ➣ class restricted to MHC I
 ➣ imp action is virus killing :: good that MHC I expression is so widespread

MHC Class 2
• Restricted to antigen presenting cells eg MPs, dendritic cells, B cells
 ➣ although IFN-γ ⇒ expression of MHC II on endothelial cells & fibroblasts
• Coded in region HLA-D
• In general MHC II present exogenous antigen. These first:
 o process in endosome or lysosome
 o class II molecules assembled in ER
 o peptides from proteolytic cleavage assoc with class II molecules
 o peptide – MHC complex associate and transport to cell surface
• CD4+ interactions only

Recognising Self
• Self MHC molecules = those that grew up with during maturation in thymus
• In thymus: Only T cells that can recognise self-MHC are allowed to move to periphery
 ➣ ∴ type MHC molecules T cell encounters during development influences reactivity in periphery

HLA & Diseases
• Diseases assoc with HLA locus
• Eg anky spondylitis – people with HLA-B27 have x90↑ chance of getting disease
• Categories:
 o Inflam diseases – B27 eg anky spond, postgonococcal arthritis, acute anterior uveitis
 o Inherited errors of metabolism – hereditary haemochromatosis HLA-A
 o Autoimmune – auoimmune endocrinopathies eg RA, DM, sjogren HLA – DR locus

Systemic Inflammatory Response Syndrome

Definitions
• SIRS - at least 2 of the following:
 o temp <36 or >38
 o HR >90
 o RR >20 or PaCO2 <32 or IPPV
 o WCC <4 or >12 or >10% immature bands
• sepsis = SIRS + confirmed or presumed infection
• Severe Sepsis =
 o Sepsis + organ hypoperfusion or dysfunction
• Septic Shock=
 o Sepsis with:
 o refractory hypotension (SBP <90mmHg or MAP <70mmHg) or
 o vasopressor dependancy after adequate volume resuscitation

Causes
• non specific:
ischaemia
inflammation
trauma incl massive transfusion
infection
insults combined

Pathophysiology

- generally has same pathophysiological properties with minor differences depending on causing factor
- many consider it a self defence mechanism
- complex process involving inflammation cascade involving:
 - humoral & cellular responses
 - complement
 - cytokine cascade
- Classification into stages by Bone:
 - stage 1:
 - local cytokine production ⇒ initiate inflam reaction
 - promotes wound repair & recruitment of reticular endothelial system (RES)
 - stage 2:
 - local cytokines released into systemic circulation – with goal to improve local response
 - macrophages & platelets recruited
 - acute phase response generally controlled by:
 - ↓ proinflam mediators
 - ↑ endogenous antagonists
 ⇒ goal = homeostasis
 - stage 3:
 - failure of homeostasis ⇒ significant systemic reaction
 - cytokine action flips to destruction (rather than protection) ⇒
 - activation of humoral cascades
 - activation of RES
 ⇒ loss of circulatory integrity ⇒ end organ dysfunction
- Multihit theory:
 - further explains progression SIRS ⇒ MODS
 - SIRS cascade = primer
 - each additional event ⇒ exaggerated response ⇒ progressive illness
 ⇒ must identify cause of SIRS & resuscitate in order to prevent downward spiral
- inflam cascade:
 - if sepsis – usually initiated by endotoxin or exotoxin
 - cytokine producers: tissue macrophages, monocytes, mast cells, platelets, endothelial cells
 - key cytokines = TNF-α & IL-1 ⇒ cleavage of nuclear factor-kβ inhibitor ⇒ ↑↑NF-kβ levels
 - NF-Kβ initiates production of mRNA which induces other proinflam cytokines esp IL6 & IL8
 - IL1 & TNFα cause:
 - fever
 - release of stress hormones
 - ↑ expression of endothelial tissue factor ⇒ coagulation ⇒ +/- DIC
 - IL6 cause release of acute phase reactants:
 - CRP
 - procalcitonin
 - proinflam ILs generally ⇒
 - act directly on tissue
 - cause 2nd mediators to:
 - activate coag cascade
 - complement cascade
• release of nitric oxide, PAF, prostaglandins, leukotrienes
Hypersensitivity Reactions

Classifications

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Immune Mechanism</th>
<th>Pathologic Lesions</th>
<th>Disease types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>• IgE antibody⇒basophil & mast cell degranulation</td>
<td>• vasoD</td>
<td>• anaphylaxis</td>
</tr>
<tr>
<td>• immediate hypersensitivity</td>
<td>• Histamine</td>
<td>• bronchoconstriction</td>
<td>• atopy</td>
</tr>
<tr>
<td>• IgE mediated</td>
<td>• Recruitment of other inflam cells</td>
<td>• mucus production</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tissue injury</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypersensitivity Reactions</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>• direct phagocytosis or cell lysis</td>
<td>• phagocytosis & lysis of cells</td>
<td>• blood transfusions</td>
</tr>
<tr>
<td>• cell cytotoxicity</td>
<td>• activation of complement</td>
<td>• inflam (some diseases)</td>
<td>• Goodpasteur's synd.</td>
</tr>
<tr>
<td>• Antibody (IgG, IgM) mediated</td>
<td>• recruitment of leukocytes</td>
<td>• functional rearrangement without cell or tissue injury</td>
<td>• autoimmune cytopaenias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypersensitivity Reactions</td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td>• tissue deposition of Ag-Ab complexes⇒accumulation of PMN's, macrophages & complement⇒release of enzymes & toxic molecules</td>
<td>• inflam</td>
<td>• SLE</td>
</tr>
<tr>
<td>• immune complex</td>
<td></td>
<td>• necrotising vasculitis (fibrinoid necosis)</td>
<td>• serum sickness</td>
</tr>
<tr>
<td>• IgG, IgM, IgA mediated</td>
<td></td>
<td></td>
<td>• arthus reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• necrotising vasculitis</td>
</tr>
<tr>
<td>Type IV</td>
<td>• T-cell induced mononuclear cell accumulation</td>
<td>• perivascular cellular infiltration</td>
<td>• TB, sarcoid</td>
</tr>
<tr>
<td>• delayed hypersensitivity</td>
<td>• release of lymphokines & monokines</td>
<td>• oedema</td>
<td>• Type I DM</td>
</tr>
<tr>
<td>• T-cell mediated</td>
<td>• often with granuloma formation</td>
<td>• granuloma formation</td>
<td>• RA, IBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cell destruction</td>
<td>• MS</td>
</tr>
</tbody>
</table>
Type I (immediate) Hypersensitivity

Eg anaphylaxis

- Immune response releases
 - vasoactive & spasmonogenic substances
 - cytokines
 - Act on vessels, smooth mm and recruit inflam cells

- Features:
 - IgE mediated - which are directed against specific antigens (allergens)
 - eosinophils
 - CD4+ helper T cells
 - Th2 cells
 - IgE B cells
 - Mast cells – already present in all tissues
 - Basophils – similar to mast cells APART only found in circulating blood

IgE Synthesis & Mechanism of Action [sensitisation]

- Dendritic cell present antigen to naïve CD4+ cell
- CD4+ differentiate into Th2 cell
- Cytokine release:
 - IL4 ⇒
 - ↑IgE synthesis from IgE B cells
 - sustain development of Th2 cells
 - IL3, IL5 & GM-CSF ⇒ ↑production & survival of eosinophils
 - IL13 ⇒
 - ↑IgE production
 - ↑mucus secretion epithelial cells

- IgE produced by B cells
- IgE bound to mast cells & basophils via Fc receptor

Mast Cell (Basophil) Degranulation

- re-exposure ⇒
 - allergen bind & cross link 2 IgE on mast cell/basophil ⇒
 - calcium enters mast cell
 - degranulation of preformed vesicles containing primary mediators
 - synthesis & release of secondary mediators

- other causes of mast cell/basophil degranulation:
 - complement C3a, C5a (anaphylatoxins)
 - drugs eg codeine, morphine, adenosine
 - mellitin (bee venom)
 - sunlight
 - trauma
• Heat/cold

2 phases of Response seen:
• Initial rapid
• Second delayed response

Primary rapid response
• 5-30 mins of allergen exposure
• Resolution within 30 mins
• Mediators which induce response:
 o Biogenic amines eg histamine, heparin, 5-HT, PAF, anaphylactoxin:
 ▪ Bronchial smooth mm contraction
 ▪ Vasc permeability & VD
 ▪ Mucuous gland secretion
 o Chemotactic mediators eg
 ▪ Eosinophil chemotactic factors AND
 ▪ Neutrophil chemotactic factors
 o Enzymes in granule matrix eg chymase, tryptase ⇒
 ▪ Kinins
 ▪ Activate complement
 o Proteoglycans eg heparin

Second Delayed Response
• 2-24 hours after allergen exposure
• Can last for days
• Intense inflam cell infiltration ⇒ tissue damage – typically mucosal epithelial cell damage
 ▲ eg Eosinophils, neutrophils, Basophil, monocytes & CD4+ T cells
• Driven by activated mast cell release of:
 o Lipid mediators:
 ▪ Leukotriene B4 = highly chemotactic for neutrophils, monocyte & eosinophils
 ▪ Leukotriene C4, D4, E4:
 ▪ x1000 more potent than histamine at vasc perm & bronchial smooth mm constriction
 ▪ Prostaglandin D2: histamine like response
 ▪ Platelet activating factor:
 ▪ Platelet aggregation
 ▪ Histamine release & effects
 ▪ Proinflammatory eg chemoattraction & degranulation of neutrophils
 o Cytokine mediators:
 ▪ TNF-α:
 ▪ Recruits many additional inflam cells which release further cytokines
 ▪ Activates epithelial cells ⇒ secrete chemokines eg eotaxin & RANTES
 ▲ Recruit eosinophils
 ▪ IL1, IL3, IL4, IL5, IL6
 ▪ GM-CSF
 ▪ Chemokines
• Eosinophils ONLY impt in delayed response – they release:
 o Major basic protein
 o Eosinophil cationic protein
 ▪ Tissue damage to epithelial cells
• Large positive feedback loop eg
 o Eosinophils & activated leukocytes also produce leukotriene C4 & PAF ⇒ ed mast cell degranulation
Atopy
- susceptibility to type I response to genetically determined
- Atopic people have:
 - Higher serum IgE level
 - More IL4 producing T_{H2} cells
- Cause not fully understood
- Genes suggested
 - 5q31 – codes for many ILs & GM-CSF
 - 6p – close to HLA complex

Anaphylaxis
- symptom complex which follows exposure of a sensitised person to an antigen
- symptoms result of type 1 reaction assoc with IgE mediated mast cell degranulation
 - need to have seen antigen before to create antigen specific IgE which has then attached to mast cells + basophils
- full blown reaction with any dose
 - anaphylactoid reaction = more dose dependant
- exposure ⇒ mast cell & basophil degran ⇒ release
 - histamine, kinins, serotonin, PAF heparin
 - activatin of phospholipase A ⇒ PGs, leukotrites, PAF
- 5 grades clinical classification:
 - 1) cutaneous
 - 2) above + hypotension, tachycardia, bronchospasm
 - 3) above but more severe eg CVS collapse
 - 4) cardiac +/- resp arrest
 - 5) death

Anaphylactoid Reactions
- pathology:
 - exposure + combination of antigen with IgG, IgM +/- Hapten
 - does not require Ig cross linkage
 - activation of complement – classical & alterative pathways
 - formation of anaphylatoxins, C3a & C5a
 - ⇒ mast cell + basophil degranulation
- does not require prior exposure to causative agent
- usually less severe than anaphylaxis but may be indistinguishable

Local Immediate Hypersensitivity Reactions
- atopic allergens
- = hereditary response affecting 10% popn
- maps to 5q31 gene (where many T_{H2} type cytokines are located)
- type I response to inhaled/ingested allergens
- symptoms eg urticaria, angioedema, rhinitis, asthma
Type II (Antibody Mediated) Hypersensitivity

- mediated by antibodies against intrinsic & extrinsic antigens:
 - absorbed on cell surface
 - extracellular matrix
- then follow 3 pathways:
 - opsonization killing & phagocytosis
 - complement & Fc receptor mediated inflammation
 - antibody mediated cellular dysfunction

Opsonization killing & Phagocytosis
- mediated by:
 - opsonisation & complement:
 - directly lysed via C5-C9 complement membrane attack complex (MAC) OR
 - opsonised for phagocytosis by:
 - antibodies
 - C3b fragments
 - Fc receptor mediated phagocytosis
- Antibody dependent cell mediated cytotoxicity (ADCC):
 - Low concentrations of bound IgG/IgE to foreign cell ⇒ attract non sensitized cells with Fc receptor ⇒ cell lysis without phagocytosis
 - Cells capable of ADCC eg NK cells, MPs, eosinophils
- Clinically occur in
 - Transfusion reactions – host preformed antibodies opsonise foreign cells
 - Erythroblastosis foetalis – IgG crosses placenta ⇒ destruction fetal rbcs
 - Autoimmune haemolytic anaemia – antibody to own blood cells
 - Drug reactions – antibody produced which react with drug

Complement & Fc receptor mediated inflammation
- Antibodies deposited in ECM ⇒ complement activation ⇒ recruitment of non specific inflam cells

- Activated inflam cells release:
 - Proteases
 - ROS
 -⇒ tissue damage

- Damage via complement & Fc interactions
- Clinically:
 - Glomerulonephritis
 - Vascular rejection in organ grafts

Antibody Mediated Cellular Dysfunction
- Certain antibodies can wrongly activate or block normal cell or hormonal functions
 - Eg - antibody stimulates TSH receptor without hormone eg Graves disease
 - antibody inhibits binding of ACh neurotransmitter eg myasthenia gravis
Type III (Immune Complex-Mediated) Hypersensitivity

- Antigen-antibody complexes (= immune complexes) form in circulation or at site of antigen deposition
 - complexes also formed in norm immune response.
 - whether pathological process will develop is not fully understood
- Antigens can be exogenous or endogenous
- Immune complex mediated disease can be systemic or local

Systemic Immune Complex Disease
- Circulating immune complexes which systemically deposited
- Eg acute serum sickness:
 - 3 phases to reactions:
 - formation immune complex- takes 7 days
 - deposition of complex in tissues
 - inflam reaction at sites of deposition @approx 10days
 - Caused by administration large amounts foreign material ie too much antigen for RES system to remove
 - New antibodies synthesized which complex with antigen ⇒ circulating complexes
 - takes about a week
 - Small antigen complexes (↑antigen:antibody) circulate:
 - Live for long time as low affinity for mononuclear phagocytes ↓. not cleared well
 - Prone to deposition with capillary/arteriolar wall ⇒ vasculitis
 - enhanced as small complex also binds to Fc or C3b receptors ⇒ recruit inflam cells ⇒ release vasoactive mediators ie cytokines
 - Eg affected tissues:
 - Renal glomeruli ⇒ GN
 - Joints
 - Skin
 - Heart
 - Serosal surfaces
 - As antibody production increases: small complex ⇒ large complex (↑antibody:antigen):
 - ↑affinity to phagocyte binding ⇒ end process
 - deposition of immune complexes activates
 - neutrophils & MPs via Fc receptor
 - complement cascade
 - immune complexes also
aggregate platelets \Rightarrow degranulation
activate factor XII \Rightarrow coag cascade

- Morphology:
 - acute necrotising vasculitis predominates:
 - fibrinoid deposition within vessel walls
 - neutrophil infiltration with surrounding haemorrhage & oedema

Local Immune Complex Disease (Arthus Reaction)
- localised tissue vasculitis & necrosis
- occurs instead of systemic reaction because of:
 - formation & deposition of immune complexes is localised eg
 - intracutaneous antigen injection in previously sensitised hosts
 - diff to type I response as takes >4hrs lesion develop
 - oedema \Rightarrow haemorrhage \Rightarrow ulceration
 - relevant antigen is planted/deposited within particular tissue eg renal glomerulus

<table>
<thead>
<tr>
<th>Disease</th>
<th>Antigen Involved</th>
<th>Clinicopathologic Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Nuclear antigens</td>
<td>Neuritis, skin lesions, arthritis, others</td>
</tr>
<tr>
<td>Pseudolipidsic glomerulonephritis</td>
<td>Streptococcal cell wall antigen(s); may be "planted" in glomerular basement membrane</td>
<td></td>
</tr>
<tr>
<td>Polyarteritis nodosa</td>
<td>Hepatitis B virus antigens in some cases</td>
<td>Systemic vasculitis</td>
</tr>
<tr>
<td>Reactive arthritis</td>
<td>Bacterial antigens (e.g., Yersinia)</td>
<td>Acute arthritis</td>
</tr>
<tr>
<td>Serum sickness</td>
<td>Various proteins, e.g., foreign serum protein (horse anti-thymocyte globulin)</td>
<td>Arthritis, vasculitis, nephritis</td>
</tr>
<tr>
<td>Arthus reaction (experimental)</td>
<td>Various foreign proteins</td>
<td>Cutaneous vasculitis</td>
</tr>
</tbody>
</table>

Type IV (cell mediated) Hypersensitivity
- initiated by specifically sensitized T lymphocytes
 - ie antibodies not involved
- includes:
 - 1. delayed type hypersensitivity - CD4+ T cells
 - 2. T cell mediated cytotoxicity – CD8+ T cells
- Overview:
 - Antigen/hapten introduced to body
 - Combines covalently with receptors on lymphocyte membrane
 - \Rightarrow Lymphocyte mitosis
 - \uparrow ed release of lymphokines & \uparrow vascular permeability
 - local inflame reaction within 24-48hrs eg erythema, blistering, exfoliation
 - Many autoimmune disorders
Delayed Type Hypersensitivity

- Reaction to eg:
 - TB
 - Viruses, fungi, protozoa & parasites
 - Skin sensitivity to chemical agents or contact dermatitis
 - DM & MS (also involve some CD8+)
 - Allograft Graft sensitivity

- APC process antigens, present to CD4+
- CD4+ recognise antigens & MHC II molecules on surface ⇒ CD4+ ⇒ T\(_H\)1 cells
- T\(_H\)1 cells:
 - Secrete cytokines – main IFN-\(\gamma\)
 - Some into circulation & remain in memory pool of T cells for many years
- On re-exposure to antigen T\(_H\)1 cells recognise antigen and are activated

Cytokines:
- IL12
 - Critical for induction of T\(_H\)1 response
 - secreted from activated MPs & dendritic cells
 - MPs encounter antigen ⇒ secrete IL2 ⇒ drive CD4+ into T\(_H\)1
- IFN-\(\gamma\):
 - Key mediator delayed type hypersensitivity
 - Also CD4+ ⇒ T\(_H\)1
 - Powerful activator of MPs:
 - ↑ability to kill & phagocytose microorganisms
 - ↑MHC II on surface ⇒ ↑ antigen presentation
 - ↑PDGF secretion ⇒ ↑ fibroblast proliferation & ↑ collagen synthesis
 - ↑TNF, IL1, chemokines ⇒ ↑inflammation
 - ↑IL12 ⇒ ↑T\(_H\)1 response
- IL2:
 - Autocrine & paracrine prolif of T cells
 - incl T\(_H\)1 cells
- TNF & lymphotoxin – effect endothelial cells:
By Adam Hollingworth

- ↑secretion prostacyclin ⇒ local VD
- ↑expression P-E selectins = adhesion molecules allow movement of lymphocytes into tissues
- ↑chemokines eg IL8
 - together allow ↑extravastion of lymphocytes & monocytes at site of type IV reaction
- With persistent or nondegradeable antigens eventually see nodule of activated ‘epitheloid’ MPs
 - form a granuloma
- Granuloma = epitheloid cells surrounded by collar of lymphocytes

T Cell Mediated Cytotoxicity

- Eg Viral infection & tumour cells
- Virus associates with MHC I in cell ⇒ to cell surface ⇒ recognised by TCR of cytotoxic CD8+ (CTLs) ⇒ lysis
- CTLs also involved in allograft rejection
- CTL killing via:
 - Perforins & granzymes:
 - perforin drills hole in target cell plasma membrane
 - granzymes then released through perforin pore
 - granzymes activate intracellular caspases ⇒ apoptosis of target cell
 - perforin also allow water [in] ⇒ osmotic lysis
 - Fas-FasL pathways – via apoptosis
Transplant Rejection

- Allograft = transplant of cells/tissue/organ to a recipient from non-identical donor of same species
- Xenograft = graft from different species
- Isograft = transplant from genetically identical donor ie identical twin
- Autograft = own tissue transplanted from one site to another on same pt

- Foreign allografts elicit both types of class IV Cell mediated Hypersensitivity
 \leftrightarrow = delayed or T cell mediated
- Host immune system triggered by foreign histocompatibility molecules (HLAs) on donor epithelium & parenchymal cells
- HLAs exist in class I & class II forms
 \leftrightarrowie MHC class I & II
- Process of graft rejection:
 - Sensitisation phase – recognising foreign donor antigens
 - Graft destruction phase

Recognising Allografts – (Sensitisation Phase)

- Host T cells recognise in 2 ways:
 - Direct
 - Indirect

 Direct
- Host T cells recognise donor HLA on donor APCs
- Donor dendritic cells (ie the APCs) most impt cells in process
- Immune response:
 - Donor MHC I HLA + CD8+ \Rightarrow CTLs
 - Donor MHC II HLA + CD4+ \Rightarrow T_{H1} effector cells

Indirect
- Host T cells recognise donor HLA after processing by host APCs
 \leftrightarrowie same process for any exogenous processed antigen
- Main immune response = delayed type (IV) hypersensitivity mediated by CD4+ lymphocytes
 \leftrightarrow also activate β lymphocytes \Rightarrow plasma cells \Rightarrow any Ig secretion
Graft Destruction Phase

- Mediated by cellular & humoral mechanisms
- Include:
 - Direct CTL mediated cytolysis
 - MP mediated destruction — promoted by lymphokine release
 - Interleukin (IL) 1 \Rightarrow activate CD8+ & Cd4+ \Rightarrow
 - release TNF & IFNγ AND
 - \uparrowgraft expression of HLA class II
 - soluble antigens from graft stim B lymphocytes \Rightarrow antibody secretion
 - \Rightarrow Complement activation
 - \Rightarrow endothelial injury & vasculitis
 - Activation NK cells

Types of Rejection

Hyperacute Rejection
- minutes
When recipient prev sensitized to antigen in a graft eg blood transfusion or pregnancy

Preformed circulating antibody binds to graft endothelial HLA class I antigens

Immediate:
- Complement
- ADCC mediated injury

Result is:
- Coagulation
- Microvascular thrombosis
- Graft infarction

Acute Rejection
- Within first month of transplant or stop immunosuppressive therapy
- Cellular & humoral mechanisms contribute
- See interstitial mononuclear cell infiltrate ie MPs, plasma, CD4 & CD8 T cells:
 - CTL damage to endothelium & parenchymal cells
 - CD4+ ⇒ delayed hypersensitivity (IV) response

Acute Humoral Rejection or Accelerated Rejection
- Aka rejection vasculitis
- Mediated by antidonor antibodies
- First few months ⇒ necrotising vasculitis & consequent thrombosis
- May also see subacute vasculitis ⇒ infarction

Chronic Rejection
- Months to years
- Progressive organ destruction
- Cellular immune response or antibody mediated or combo
- Arterties dense intimal fibrosis ⇒ narrowing of lumen ⇒ allograft ischaemia

Transplant Haematopoietic Cells
- Host irradiated to
 - eradicate malignant cells
 - suppress host immune system – to minimise rejection of donor marrow
- host NK cells or radiation resistant T cells may survive ⇒ transplant rejection

GVHD
- =unique problem with marrow transplant
- donor immunocompetent cells introduced into immunosuppressed HLA nonidentical host
- ⇒ donor immune cells engraft and flourish THEN recognise host as foreign and mount response
 - CD4+ & CD8+ T cell mediated injury
- signs:
 - most effected: bilary epithelium, skin & GI mucosa
 - reactivation CMV infection
- methods to decrease incidence GVHD:
 - HLA matching
 - Selective donor marrow T cell depletion
 - but ↓T cells in donor ⇒
 - ↓chance of engrafting
 - ↑chance relapse
- acute GVHD <4 weeks transplant:
 - dermatitis
 - jaundice
 - hepatosplenomegaly
 - overwhelming infection
- chronic >100days post:
- hepatitis
- pericarditis
- myositis
- death from opportunistic infection