Haematology

Table of Contents

Haematology .. 1
 Haemostasis & Thrombosis ... 2
 Endothelium .. 5
Coagulation ... 7
 Classic Coagulation Cascade ... 7
 Cell Based Theory of Coagulation ... 8
 Fibrinolysis .. 11
 Thrombosis .. 12
Blood ... 14
 Haemopoiesis ... 14
Blood Types ... 20
Anaemia .. 22
 Classification .. 22
 Cause .. 23
Assessment of Coagulation, Platelet Function & Fibrinolysis 30
Plasma Proteins ... 34
Blood Products & transfusion Medicine ... 36
 Blood Products .. 37
 Complications of Transfusion ... 41
 Massive Transfusions ... 44
Haemostasis & Thrombosis

- haemostasis & thrombosis inter-related & dependant on:
 - endothelium
 - platelets
 - coagulation cascade

- haemostasis =
 - physiologic process
 - maintain blood in a fluid, clot free state in norm vessels
 - can produce rapid localized plug at site of inj if required

- thrombosis =
 - pathological
 - inappropriate activation of haemostatic mechanisms in
 - uninjured vessels
 - thrombosis in minor injury

Normal Haemostasis

- following injury:
 - arteriolar vasoconstriction:
 - reflex neurogenic mechanism
 - augmented by local secretion of endothelin
 - effect only transient
 - stops exsanguination in massive injury
 - slows flow to allow platelet & coag cascade to initiate
 - platelet adhesion & activation:
 - subendothelial ECM exposed which highly thrombogenic
 - platelets adhere
 - platelets activate = change shape, release secretory granules
 - platelet aggregation ⇒ plug
 - procoagulant activity
 - primary haemostasis
 - activation of coagulation cascade
 - driven by tissue factor:
 - membrane bound procoagulant lipoprotein
• synthesized by endothelium & exposed after injury
 • culmination of cascade = activation of thrombin
 • thrombin:
 • fibrinogen to insoluble fibrin ⇒ fibrin deposition
 • further platelet aggregation & granule release
 ⇐ secondary haemostasis
 o activation of counter-regulatory mechanisms eg t-PA which restrict clot to specific site

Platelets
• Platelets activated once contact with ECM beneath injured ECs
• Activation:
 o Adhesion [no ATP required]
 o Shape change [active process]
 o Secretion (release reaction) [active]
 o Aggregation

Adhesion
• Mediated through vWF
• Bridges gap between platelet receptors (mostly glycoprotein Ib) & exposed collagen
 ⇐ cofactors serum V & IX
• Other adhesion reactions but vWF only one strong enough to overcome shear force of blood flow
• Deficiency vWF = vW disease
• Deficiency GpIb receptor = Bernard-Soulier Syndrome

Platelet Granule Activation/Secretion
• Both granules release shortly after adhesion
• Alpha granules contain:
 o P-selectin = adhesion molecule on their membranes
 o Contain fibrinogen, fibronectin, factor V, VIII, PDGF, transforming growth factor B
 o vWF
• Dense bodies contain:
 o ADP & ATP
 o Ionized Ca
 o Histamine
 o Serotonin
 o Adrenaline
• Dense body release imp:
 o Ca required in coagulation cascade
 o ADP =
 • Potent ↑ platelet aggregation
 • ↑ ed release of ADP from other platelets
• platelet activation ⇒ surface expression phospholipid complexes:
 o nucleation & binding site for Ca & clotting factors in intrinsic coag cascade

Platelet Aggregation
• stim of aggregation =
 o ADP
 o Thromboxane A2 – from platelets
 ⇐ together ⇒ autcatalytic reaction ⇒ aggregating platelets ⇒ primary plug
• Primary plug = reversible
• Thrombin from coag cascade binds to PAR (platelet surface receptors)
 ⇐ further potentiates aggregation while also creating fibrin ⇒ cementing plug in place
At same time platelet contraction ⇒ viscous metamorphosis
↓ irreversible definitive secondary plug

∴ thrombin essential for thrombi

noncleaved fibrinogen also imp cofactor in aggregation:
 o ADP activation ⇒ change in conformation of platelet GpIIb-IIIa receptors to allow fibrinogen to bind
 o Fibrinogen binding ⇒ connection of multiple platelets ⇒ large aggregates
 ↓ GpIIb-IIIa deficiencies ≈ Glanzmann thrombasthenia bleeding disorder & therapeutic target

Erythrocytes & leukocytes also aggregate in haemostatic plugs:
 o Leukocytes adhere via P selectin ⇒ contribute to inflam response

Summary Platelet Effects

Adhere to ECM at site of endothelial injury ⇒ activated

On activation:
 o Secrete granules eg ADP
 o Synthesise TxA2

Platelets expose phospholipid complexes which imp in intrinsic coag pathway

Injured or activated ECs expose tissue factor ⇒ extrinsic coag pathway

ADP ⇒ formation of primary plug

Primary plug converted to secondary plug by
 o ADP
 o Thrombin
 o TxA2

Fibrin deposition stabilises & anchors the aggregated platelets

PGI2 & TxA2

PGI2 =
 o Endothelium derived
 o VD
 o Inhibit platelet aggregation

TxA2=
 o Platelet derived
 o VC
 o Activates aggregation

Aspirin blocks COX pathway ⇒ ↓TxA2 synthesis ⇒ ↓aggregation
Endothelium
• endothelium modulate opposing factors of haemostasis

Antithrombotic Properties
• essential to localise coagulation to where is a problem ie where original platelet plug was formed
• occurs by:
 o cascade of reactions limited to where platelets adhered
 o series of inhibitors which restrict coag to site of injury:
 ▪ circulating factors eg antithrombin & heparin molecules
 ▪ endothelium derived factors eg TFPI
 ▪ thrombomodulin system
 ⬤ all described below
• antiplatelet effects:
 o non activated platelets do not adhere to endothelium
 o Endothelial cells secrete:
 • PGI₂ (endothelial prostacyclin) & NO:
 ▪ Inhibit activated platelets from adhering to surrounding uninjured endothelium
 ▪ Potent VDs
 ▪ Inhibit aggregation
 ▪ Synthesised by endothelial cells
 ▪ Synthesis ↑ed by factors from coagulation cascade ie thrombin & cytokines
 • Adenosine diphosphatase:
 ▪ Degrades ADP ∴ inhibits platelet aggregation
• Anticoagulant effects:
 o Effects mediated by:
Heparin like molecules:
- Membrane associated
- Interact with antithrombin III ⇒
 - inactivate thrombin & other factors (serine proteases) eg factor 9,10,11,12
 - why heparin useful to minimise thrombosis

Thrombomodulin:
- Specific endothelial thrombin receptor binds to thrombin
- Converts it from procoagulant to anticoagulant which can activate protein C
- Activated protein C ⇒ cleavage of factor Va & VIIIa ⇒ inhibit clotting
 - factor V mutation ⇒ resistance to activated protein C ⇒ ↑thrombosis
- Inactivates inhibitor of t-PA activator (ie ↑tPA action)
- Protein C & S = Vit K dependant proteins
- Thrombomodulin mops up circulating thrombin preventing unwanted clots

Tissue factor pathway inhibitor:
- Secreted by ECs (and others)
- Cell surface protein that complexes & inhibits
 - activated tissue factor
 - factor VIIa
 - factor Xa

Fibrinolytic effects:
- endothelial cells synthesise tissue-type plasminogen activator (tPA)
 - ⇒ ↑fibrinolytic activity ⇒ clear fibrin deposits from endothelial surfaces

Prothrombotic Properties
- platelet effects:
 - endothelial presence of vWF
 - not specifically synthesised post inj, but is always there
 - vWF = cofactor for platelet binding to collagen & other surfaces
- procoagulant effects:
 - tissue factor induced by:
 - bacterial endotoxin
 - cytokines eg TNF, IL1
 - tissue factor ⇒ activates extrinsic clotting cascade
 - endothelium binds IXa, Xa ⇒ ↑clotting cascade
- Antifibrinolytic Effects:
 - ECs secrete PAIs (inhibitors of plasminogen activator) ⇒ ↓fibrinolysis
Coagulation

- 2 theories of secondary haemostasis:
 - classic coagulation cascade
 - cell based theory of coagulation

Classic Coagulation Cascade

- Old concept of extrinsic & intrinsic pathway now valid only in vitro
- In vivo theory:
 - Initiation ⇒ amplification ⇒ propagation ⇒ stabilisation
- = conversion of inactive proenzymes ⇒ activated
- culminates generation insoluble fibrin

Focus on common pathway of serine proteases:

Kumar et al: Robbins & Cotran Pathologic Basis of Disease, 8th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.
Cell Based Theory of Coagulation

Initiation
• clotting initiated by events similar to extrinsic pathway
• cells (not in blood vessels walls) possess tissue factor:
 o not found in vasc endothelium cells or free circulation
 o = glycoprotein which transmembrane
• initiation when these cells exposed to c irculation coagulation proteins ie vasc endothelium disrupted
• Factors 7, 9, 10 generate priming amount of thrombin
• Thrombin:
 o Responsible for initiation of coag process proper
 o Activation platelets
 o ↑assembly of coag factors on platelet surface

Amplification
• currently not enough thrombin generated to adequately trigger enough cleavage of fibrinogen to fibrin
• amplification involves feedback mechanisms:
 o factor 7 +ve feedback loop
 o cofactor 5 & 8 +ve feedback look to cleave more thrombin from prothrombin
 o activation of F11 & F9

Propagation
• On surface of activated platelets:
 o Ca used as co factor to ↑production of factor 10
 o Factor 5 forms prothrombinase ⇒ rapid thrombin creation
• Ultimately thrombin ⇒ cleaves fibrinogen to fibrin

Stabilisation
• Need to stabilise clot
• Fibrin creation ⇒ max thrombin generation
• Thrombin then activates:
 o factor 13 ⇒ cross link soluble fibrin to stabilise matrix
 o thrombin-activateable fibrinolysis inhibitor (TAFI) which maintains clot stability

Factors
• factors (2,7,9,10,11,12) circulate in plasma as inactive precursors
• activated factors = proteases
• a reaction results from assembly of a complex held together by Ca ions on a phospholipid complex (generally on activated platelet surface)
• composition of reaction:
 o enzyme = activated coagulation factor
 o substrate = proenzyme form of coag factor
 o cofactor = reaction accelerator
• ∴clotting remains localised to site assembly possible eg activated platelet or endothelium
Thrombin
• thrombin - effects
 o effects in final stage of coag cascade
 o wide variety of effects on local vessels & inflam via:
 ▪ binding to PARs (protease activated receptors)
 • belong to 7 transmembrane G protein coupled receptor family
 • thrombin clips extracellular end of receptor ⇒ tethered peptide ⇒ binds rest of receptor ⇒ conformational change of receptor ⇒ activate assoc G protein
 ⇐ : thrombin autocatalyses receptor which explains small amount of thrombin ⇒ big effect

Factor 8
• = large protein made of 2 components:
 o larger = F8R:AG component:
 ▪ platelet adhesion to exposed subendothelial connective tissue
 ▪ platelet aggregation
 ▪ vWF binding (F8:WF)
 o smaller F8:C
 ▪ non covalently bound to larger component
• activated by thrombin
• F8a stabilises fibrin polymer by introducing Glu-Lys isopeptide bonds between adjacent fibrin monomers

Fibrinogen
• = f2
• 3 pairs of polypeptide chains: alpha, beta, delta
• cross linked by S-S bonds
• thrombin releases fibrinopeptide A + B from α & β chains ⇒ fibrin monomer
• fibrin monomer = cross linked alpha, beta delta chains
• fibrin polymer = after spontaneous hydrogen bonds between molecules of monomer

Calcium
• essential cofactor in:
 o factor 8
 o factor 5
 o factor 13 – soluble fibrin ⇒ insoluble fibrin
• in-vivo serum Ca never get low enough to prevent coagulation as will arrest prior to this
• citrate toxicity ie hypocalcaemia: citrate in transfused blood rapidly converted to HCO₃ in liver
• might need to give CaCl if prolonged QT or ST segment changes

Von Willebrand Factor
• = large multimeric plasma protein
• actue phase protein ⇒ ↑ed stress & surgery
• produced by:
 o endothelial cells ⇒ stored in Weibel-Palade bodies
 o megakaryocytes ⇒ stored in platelets α granules
• functions:
 o adhesive protein:
 ▪ main function
 ▪ platelet adhesion to subendothelium:
 • vWF from Weibel Palade bodies bind to exposed collagen & act as middle man to allow platelet attachment
 • vWF exposes sites which can bind glycoprotein 1B of platelet
 • ∴ coating of platelets over damaged area
 ▪ or to another platelet:
 • ↑VWF binding to ↑complex GP 2b:3a in platelet membrane ⇒ plt:plt adhesion
 o protect factor 8:
 ▪ circulates in plasma bound to F8 (F8R:AG)
 ▪ prevents it from degradation by eg activated protein C

Anticoagulants
• vitamin K dependant clotting factors = 2, 7,9,10, protein C & S
Fibrinolysis

This system works on top of factors already present to inhibit thrombosis
- amplification system for limitation of clot size & dissolution of stable fibrin
- fibrinolysis = breakdown of fibrin by proteolytic enzymes
- plasminogen activated to ⇒ plasmin = key serine protease involved
- Fibrinolytic cascade:
 - Plasmin generated from:
 - factor XII dependant pathway OR
 - bacterial product of streptokinase OR
 - plasminogen activators – 2 types:
 - u-PA (urokinase-like PA)
 - present in plasma & tissues
 - activates plasmin in fluid phase
 - uses amplification loop
 - t-PA (tissue-type PA)
 - most impt
 - synthesised by endothelial cells
 - most active when attached to fibrin
 - affinity for fibrin means targeted to site recent clot
 - Plasmin actions:
 - cleave fibrin & interferes with its polymerization ⇒ fibrin degradation products (also act as weak anticoagulants)
 - trigger complement cascade
 - plasmin then released into circulation again
 - [DIC = excess of free plasmin ⇒ large amount of D Dimer ⇒ activate factor 5 & 8]
 - Functional plasmin activity restricted to site of thrombosis by:
 - t-PA activates plasminogen most effectively when bound to fibrin meshwork via lysine binding sites
 - free plasmin rapid neutralized by serum a₂-anti-plasmin
• endothelium further modulates anticoag by
 o releasing PAIs (plasminogen activator inhibitors)
 \(\uparrow \) block fibrinolysis by inhibiting t-PA binding to fibrin
 o PAI release:
 \(\uparrow \) ed by:
 • Thrombin
 • Cytokines – why severe inflam \(\Rightarrow \) intravascular thrombosis
 \(\downarrow \) ed by:
 • protein C
• variations in fibrinolysis responses:
 o more active in arterial circulation & deep veins, upper limbs
 o pregnancy:
 \(\uparrow \) fibrinogen & plasminogen levels
 \(\downarrow \) t-PA, \(\alpha_2 \)-plasma inhibitor
 \(\downarrow \) overall fibrinolysis is reduced
 o neurohormonal stress (corticosteroids, catecholamines, ADH) \(\Rightarrow \) \(\uparrow \) transient \(\uparrow \) fibrinolysis
 o venous occlusion \(\Rightarrow \) \(\uparrow \) fibrinolysis – explaining MOA of calf squeezers preventing DVT

Thrombosis
• inappropriate activation of clotting in uninjured vasculature or thrombotic occlusion following only minor inj
• Virchow’s triad:
 o Endothelial inj
 o Stasis or turbulent flow
 o Blood hypercoagulability

Endothelial Injury
• Clotting caused by:
 o Exposed subendothelial ECM & tissue factor
 o Adherence of platelets
 o Imbalance of clotting factors
 \(\downarrow \) PGI2, t-PA
 \(\uparrow \) PAI, \(\uparrow \) platelet adhesion molecules
• can cause thrombosis just be self
• injury following:
 o haemodynamic stress eg HTN, turbulent flow over scarred valves
 o bacterial endotoxins
 o homocystinuria
 o HCL
 o Radiation
 o Smoke

Flow Problems
• Norm flow = laminar:
 o Cells flow in centre of lumen
 o Outside clear plasma zone
• turbulence ⇒ eddy currents with pockets of stasis
• stasis ⇒
 o platelets into contact with endothelium
 o prevent dilution of activated clotting factors
 o ↓inflow clotting inhibitors
 o ↑endothelial cell activation
• stasis predominates:
 o venous circ
 o cardiac chambers eg mitral valve stenosis & AF ⇒ dilated L atrium
 o arterial aneurysms
• turbulence:
 o arteries
 o direct ⇒ endothelial inj & dysfunction
• hyperviscocity syndromes or deformed rbcs ⇒ small vessel stasis ⇒ ↑risk thrombosis
 ◗ eg polycythaemia or sickle cell anaemia
Blood

- Blood =
 - 8% body weight
 - 5.6L in 70kg man
 - 55% of this volume = plasma

Haemopoiesis

- Pluripotential haemopoietic stem cells (PHSC) ⇒
 - Rbcs
 - Leucocytes
 - Platelets

- Order of organs being haemopoietically active:
 - Primitive erythroblasts 1st cells to develop in yolk sac – 2-4 weeks
 - Liver (& spleen) become – 6w – 7 months
 - BM – start at 6-7 months ⇒ 5yrs old:
 - Rbc made almost exclusively here
 - BM progressively replaced with fat in long bones until 18-20yrs
 - >20yrs confined to BM in central skeleton & prox humerus/femur

White Blood Cells

- granulocytes most numerous of Wbcs
 - differentiate into neuts, eosinophils, basophils – horseshoe nuclei
- lymphocytes – large round nuclei
- monocytes – kidney shaped nuclei
Platelets
- megakaryocytes \(\Rightarrow\) platelets
- no nuclei
- 60-75% circulate; rest stay in spleen
\[\Rightarrow::\text{spleenectomy} \Rightarrow \uparrow\text{serum platelet count}\]
- half life 4d

RBCs
- lose nuclei before entering circ
- av survival 120d
- each adult man = 900g haemoglobin

Production
- proerythroblast \(\Rightarrow\) series smaller normoblasts – over 5 days
- erythroblast progressively:
 - contain more Hb
 - nuclear chromatin condenses
- eventually pyknotic nucleus removed from erythroblast \(\Rightarrow\) reticulocyte
- reticulocyte =
 - 1st rbc to enter circulation
 - last 1-2 days
 - contains some RNA
 - can synthesis Hb
 - mature into rbc when RNA lost
- production regulated by EPO:
 - half life 6-9hrs
 - 90% made in kidney, 10% in liver
 - \(\uparrow\)rate of differentiation of stem cell \(\Rightarrow\) \(\uparrow\)production
- final maturation of rbc requires vit B12 + folate :
 - needed for DNA synthesis
 - deficiency = large fragile rbc with short half life
- mature rbc survive ~120 in circulation
- removed by phagocytosis in RES – chiefly spleen & BM

Structure
- biconcave disc 7.5um wide, 2um thick
- large surface area:volume to promote gas diffusion
- v deformable & can squeeze through microvessels
- rbc cell membrane = lipid bilayer containing:
 - structural proteins
 - contractile
 - enzymes
 - surface antigens
 - CHO only preset on external surface
- 4 major proteins form lattice on inner side of rbc membrane – impt in keeping biconcave shape

Hb Production
- Hb =
 - Iron containing porphyrin (metalloprotein)
Haematology

By Adam Hollingworth

- Mw ~65 kD
- Made of 4 polypeptide globin subunits & 4 haems:
 - Each subunit contains a heme conjugated to polypeptide (=globins)
 - \(\therefore = 4 \) (2 pairs) polypeptide chains in each haemoglobin

- Haem:
 - \(= \) iron-porphyrin compound. Norm in Fe++ (ferrous state)
 - Synthesis in mitochondria with series of reactions:
 - Condensation of glycine + succinyl CoA
 - \(\Rightarrow \) protoporphyrine combines + Fe++ = haem

- Globin chains = Formed in ribosomes
 - \(\therefore \) Hb = tetramer of 4 globin chains, each with own haem in a hydrophobic pocket

- Binding:
 - \(\text{O}_2 \Rightarrow \text{O}_2 \)
 - \(\text{Globin} \Rightarrow \text{CO}_2 \) & H

- In normal adult blood
 - 97.5% = Haemoglobin A – \((\alpha_2\beta_2)\):
 - 1 pair \(\alpha \) chain
 - 1 pair \(\beta \) chain – note \(\beta \) production starts after birth (see HbF)
 - 2.5% = Haemoglobin A2 \((\alpha_2\delta_2)\) (alpha, delta)
 - Also see small amounts haemoglobin A derivatives eg HbA\(_{1c}\)
 - Glucose added to terminal valine in each \(\beta \) chain

- Fetal = Hb F \((\alpha_2\gamma_2)\) (alpha, gamma)
 - Norm replaced by Hb A soon after birth
 - Switching related to O2 availability
 - Binds less 2,3DPG \(\therefore \) ↑affinity for O2 which allows O2 to move mum ⇒ fetus in placenta
 - DPG prefers B chains to Gamma chains \(\Rightarrow \) L shift OHDC

- Chromosome location for globin genes:
 - Chromosome 16 = \(\alpha \)
 - Chromosome 11 = \(\beta, \gamma, \delta \) chains

[Diagram: Development of human hemoglobin chains]
Functions of Hb
- O2 carrier:
 - O2 loading exhibits positive cooperativity:
 - $\alpha_1\beta_1$ & $\alpha_2\beta_2$ contacts stabilise Hb molecule as O2 reacts with it
 - reaction of O2 with each subunit occurs sequentially with each facilitating the next
 - \therefore ↑ing affinity as O2 loads \Rightarrow sigmoid OHDC
 - myoglobin only has 1 subunit thus OMDC curve = rectangular
 - O2 unloading – vice versa:
 - β chains pulled apart
 - 2,3-DPG enters molecule \Rightarrow ↓affinity of Hb for O2
- buffering functions – see renal acid base section

RBC Metabolism
- rbc lacks mitochondria
- can generate ATP via anaerobic glycolytic pathway (Embden-Meyerhof):
 - generates:
 - 2ATP for each glucose \Rightarrow lactate:
 - ATP used Na/K/ATPase to keep shape, volume, flexibility
 - NADH – needed by methaemoglobin reductase to reduce metHb \Rightarrow Hb

Synthesis & Destruction of Hb
- Hb content all in red cells
 - man 16g/dl
 - woman 14g/dl
- man has 900g Hb
- destroyed:
 - 0.3g /hr
 - \sim50ml/day
 - 0.8% destroyed/day
 - \sim3 million rbc/second
- glycolysis ↓s with ↑age of rbc \Rightarrow ↓ATP \Rightarrow ↓cellular integrity
- old rbc's destroyed by macrphages (mainly in spleen):
 - globin portion split off \Rightarrow amino acids \Rightarrow re-enter aa pool
• heme $\xrightarrow{\text{heme oxidase}}$ biliverdin + CO
• biliverdin \Rightarrow bilirubin \Rightarrow bound to albumin \Rightarrow liver
• in liver bilirubin conjugated with gluronic acid \Rightarrow excreted in bile
• in GIT bili converted to stercobilin \Rightarrow some reabsorbed \Rightarrow excreted in urine as urobilinogen
• iron from heme reused for Hb synthesis
 • white light on skin: bilirubin \Rightarrow lumirubin \uparrow has shorter half life
 • without enough iron \Rightarrow \downarrowHb production \Rightarrow iron deficiency anaemia

Iron Metabolism
• Hb contains 65-70% total body iron
• Myoglobin contains 5%
• transferrin transports iron in plasma:
 o binds 2 atoms of ferric iron (Fe$^{3+}$) / molecule
 o gets iron from RES ie destroyed rbc's or GIT
 o norm 30% saturated with iron
• dietary iron found in form of:
 o haem-protein
 o ferric protein complexes
 o ferric hydroxide
• ~10-15mg iron/days food
• 10% of this absorbed:
 \uparrow in preg or iron deficiency states
• absorbed mainly in duodenum:
 o \uparrowabsorption = gastric acid, reducing agents (keeps iron in ferrous state)
 o \downarrowabsorption = alkali, chealting agents eg phosphates
• soluble iron enters mucosal cells in ferrous state \Rightarrow portal circulation bound to transferrin
• iron storage sites:
 o liver
 o spleen
 o BM
• Stored as:
 o 65% ferritin – water soluble
 o 35% haemosiderin – insoluble
• iron losses:
 o 0.5-1g iron lost/day in faeces from desquamated GIT epithelial cells
 o urine, hair, sweat (small)
 o menstruation
 o foetus in pregnancy

Haemoglobin Reactions
• Hb + O2 \Rightarrow oxyhaemoglobin
 \downarrowattaches to the Fe$^{2+}$ in the heme
• \uparrowaffinity of Hb for O2:
 o \downarrowtemp
 o \downarrow2,3-DPG
• \downarrowaffinity:
 o \uparrow2,3-DPG
• ↑ temp
 • ↑ H+
 by shifting the position of the 4 peptide chains (quaternary structure)
 • methaemoglobin =
 • drugs & oxidising agents effect blood: Fe²⁺ ⇒ Fe³⁺
 • leads to dusky cyanosis
 • NADH system converts methaemoglobin ⇒ Hb
 • Carboxyhaemoglobin =
 • CO and Hb
 • CO has much higher affinity for Hb than O₂ thus displaces O₂
Blood Types

RBC Antigens
- 400 rbc antigens known
- inherited simple Mendelian fashion
- major antigens=
 - ABO
 - Rh
- Other antigens less impt:
 - Weak antigens & antibodies only develop after multiple exposures or cold temperatures (cold agglutinins (aka antibodies)
- people produced antibodies to antigens they don’t have ie they express self tolerance of their own antigens. Failure of this system = haemolysis
- role of antigens is unknown

RBC Antibodies
- naturally occurring when lack corresponding antigen
- most impt = ABO
- ABO antibodies develop >3months age
- Natural antibody creation gp A & B antigens enter body via bacteria & food ⇒ antibody creation
 - usually IgM, reactive at 37deg C but optimal reactivity at 4deg
- Immune antibody creation occurs:
 - Trans-placental passage of antigens – only IgG can get across. Most impt = Rh antibody (antiD)
 - Transfusion
 - IgG = react optimally at 37deg

ABO System
- Antigen – on rbc cell
 - also found in plasma, saliva, gastric juice, tears, bile (not CSF)
 - unlike Rh which only on rbcs
- Antibodies – in blood serum
- Transfusion of packed red cells = transfusion of cells not serum
- ABO system named after antigens on rbc cell
- Varieties & frequency (Caucasian) of blood types – named after antigens
 - A = A antigen; anti B antibody (45%) ⇒ give A or O
 - B = B antigen; anti A antibody (10%) ⇒ give B or O
 - AB = A & B antigen; no antibody (4%) ⇒ give anything
 - O = have no antigens; anti A & B antibodies (43%) ⇒ give O only
 - thus O = universal donor; AB = universal recipient
- Antigens in intestinal bacteria & food very similar to agglutinins
 - thus: soon develop antibodies to antigens not already in their own blood

Transfusion Reactions
- Plasma in donor transfusion of packed red cells is extremely diluted once placed inside recipient
 - thus any antibodies don’t significantly activate onto against host rbcs antigens
but if recipients plasma has antibodies against donor rbcs ⇒ agglutinate & haemolyse ⇒ free Hb into plasma

- Transfusion reaction vary
 - minor ↑ bilirubin
 - severe jaundice
 - renal tubular damage ⇒ anuria ⇒ death

Inheritance ABO System

- autosomal dominant inheritance:
 - phenotype B: genotype BO or BB
- thus both parents B – can have children:
 - BB
 - BO
 - OO
 - can use this to say a child is not a fathers, but not to prove he is

Other Antibodies

- Exist many other rbc antibodies eg Rh, Duffy etc

Rh System

- Named after rhesus monkey
- C, D, E antigens only on rbcs
- D is the most antigenic and most common ~85%
- Rh antibodies =
 - Rarely occur naturally:
 - anti C & anti E
 - but no natural anti D exists
 - Usually
 - Immune created,
 - Warm
 - IgG in origin ie can cross placenta (actively)
- Problem when Rh–ve mother exposed to fetal Rh +ve blood in 1st pregnancy:
 - Needs D antibody (antiD) <72hrs to mop up/destroy Rh D+ antigens which could have crossed placenta/entered maternal circulation
 - ⇒ this prevents formation of maternal antiD IgG which would cause haemolysis of next pregnantys Rh+fetus (erythroblastosis fetalis)
 - haemolysis ⇒ death in utero, kernicterus, anaemia, jaundice, hyrdops fetails
 - bilirubin depositioned in basal ganglia
- 85% whites = Rh +ve
- 99% Asians Rh +ve

Other Blood Groups

- clinically less imp
 - P, Lewis, MN systems:
 - Naturally occurring antibodies only react at low temps
 - Antigens low antigenicity
 - Kell system:
 - 3rd most imp after ABO, Rh
 - k antigen:
present on rbcs, WBCs, platelets
is immunogenic but low frequency ∴ only impt if multiple transfusions

Anaemia

- Anaemia is deemed as a reduction in red cell mass below the normal range.
- The normal range varies with age, sex, environment and pregnancy

Physiological consequences of acute and chronic anaemia.

- Acute blood loss ⇒
 - rapid fluid shift from the interstitial compartment to the intravascular compartment.
 - usually supplemented by IV fluid.
 - ⇒ rapid fall in red cell count due to dilution. Effects of this:
 - ↓ viscosity of blood
 - ↓ oxygen carrying capacity of blood:
 - Oxygen carrying capacity = ([Hb] x SaO2 x 1.34) + 0.003 x PaO2,
 - oxygen flux = Delivery is carrying capacity x cardiac output
 - ∴ fall in Hb from 150 g/l to 100 g/l results in a fall in oxygen carrying capacity from 20 ml/100 ml to 14 ml/100 ml.
 - If metabolic rate is unchanged, this requires a
 - lower mixed venous PO2 ie ↑O2 extraction and
 - increased cardiac output to maintain oxygen flux.
 - Both of these changes occur - the rise in CO facilitated by ↓ viscosity
 - ↑ production of 2,3DPG ⇒ R shift OHDC (↑O2 unloading)
 - ↑RR: some increase in PAO2.
 - ↑rbc production:
 - Within hours of acute blood loss
 - stim by the impairment of tissue oxygenation ⇒ ↑erythropoietin.
 - ↑reticulocyte count to 10-15% over a week
 - ↑ platelet and WCC occur as they are mobilized from marginal sites.

- chronic anaemia depend partly on the cause of the anaemia.

 - Reduction in oxygen carrying capacity is always present and results in the same physiological responses as acute anaemia:
 - increased ventilation,
 - ↑CO,
 - ↑2,3DPG
 - ↓ mixed venous PO2.
 - haematological changes depend on the cause of the anaemia

Classification

- chronicity –
 - acute
 - chronic
- MCV
- Cause:
 - Blood loss
Haemolytic anaemias
- Anaemia of ↓ed erythropoesis

Chronicity
- Acute:
 - Haemorrhage
 - Haemolysis
- Chronic:
 - Everything else

MCV
- Can be classified under MCV terms

<table>
<thead>
<tr>
<th>Red Cell Appearance Indices</th>
<th>Small cells (microcytic)</th>
<th>Normal Cells (normocytic)</th>
<th>Large Cells (macrocytic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low MCV <80</td>
<td>Iron deficiency</td>
<td>Acute blood loss</td>
<td>Vit B12 def.</td>
</tr>
<tr>
<td></td>
<td>o ↓Diet</td>
<td>o Renal failure</td>
<td>o Alcohol</td>
</tr>
<tr>
<td></td>
<td>o malabsorption</td>
<td>o Marrow failure</td>
<td>o Liver disease</td>
</tr>
<tr>
<td></td>
<td>o bleeding</td>
<td>o Haemolytic anaemias</td>
<td>o Reticulocytosis</td>
</tr>
<tr>
<td></td>
<td>o growth/pregnancy</td>
<td>o Endocrine disease:</td>
<td>o Hypothyroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Hypothyroid</td>
<td>o Hypoadrenal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o hypopituitary</td>
<td>o Hypoendocrine</td>
</tr>
</tbody>
</table>

Bone Marrow Diagnosis
- Thalassaemia
- Sideroblastic disease
- Anaemia of chronic disease
- • Iron deficiency
 - o ↓Diet
 - o malabsorption
 - o bleeding
 - o growth/pregnancy
- • Acute blood loss
- • Renal failure
- • Marrow failure
- • Haemolytic anaemias
- • Endocrine disease:
 - o Hypothyroid
 - o Hypoadrenal
 - o hypopituitary

Cause
- Blood loss:
 - Acute
 - Chronic blood loss ⇒
 - iron reserves depleted or
 - rate of loss > rate of replenishment
- Haemolytic anaemias:
 - intrinsic abnormalities of rbcs:
 - hereditary: eg
 - disorders of membrane cytoskeleton
 - enzyme deficiencies: eg
 - hexokinase deficiency
 - G6PD deficiency
 - Disorder Hb synthesis:
 - Thalassaemia
 - Sickle cell anaemia
 - Acquired:
 - Membrane defect eg paroxysmal nocturnal haemoglobinuria
 - Extrinsic abnormalities
 - Antibody mediated:
 - Isohaemagglutinins eg transfusion reactions
 - Autoantibodies:
o Idiopathic
o Drug
o SLE

- Mechanical trauma to rbc:
 - Microangiopathic:
 o TTP
 o DIC
 - Cardiac traumatic haemolytic anaemia

- Infections eg malaria
- Chemical injury eg lead poisoning
- Sequestration in phagocyte system eg hypersplenism

- ↓rbc production:
 o disturbance of stem cells:
 - aplastic anaemia
 - anaemia of renal failure
 - endocrine disorders
 o disturbance of erythroblasts:
 - ↓B12/folic acid
 - iron deficiency
 - thalassaemia

- unknown or many mechanisms:
 o sideroblastic
 o anaemia chronic infections

Hereditary Spherocytosis
- autosomal dominant
- deficiency in spectrin & ankyrin meshwork protein on inner rbc cell membrane
- rbc's ⇒ more spheroidal, less deformable ⇒ splenic sequestration
- infections can trigger:
 o haemolytic crisis
 o aplastic crisis
- >50% develop gallstones from chronic ↑bili

G6PD Deficiency
- G6PD produces glutathione & NADPH as part of hexose monophosphate shunt
- Glutathione protects rbc's from oxidative injury
- Oxidant stresses ⇒ Hb denaturation in form of:
 o Heinz bodies
 o ↓deformability ⇒ splenic sequestration
- X linked disorder
- 10% American blacks – less severe. Susceptible to oxidant drugs eg anti-malarials
- Mediterranean form –
 o G6PD levels v low ∴ haemolytic episodes more severe
 o Ingestion fava beans/legumes = oxidants

Sickle Cell Disease
- Sickle Cell Anaemia = mutant chains:
 o Hb S (α2βs)²= mutant β chain (one glutamic acid replaced by a valine)
 o 8% American blacks heterozygous for HbS
HbS polymerises into long stiff chains at low O2 tensions (deoxygenated) ⇒
- Rbc changes from biconcave disc to crescent shape
- ↑ fragility ⇒ thrombus & aggregation of rbc
- benefit is protection against malaria
- common in Africa, Arabia, India

Determinants of severity of sickling:
- amount of HbS in rbc
- interaction with other Hb chains in rbc
- mean corpuscular Hb concentration (MCHC):
 - ↓ MCHC
- capillary transit times = proportional to amount of O2 extraction
 - sluggish ⇒ ↑ O2 extraction ⇒ ↑ deoxygenation ⇒ sickling

Heterozygotes:
- 40% HbS; rest HbA
- HbA reacts poorly with HbS ⇒ resisting aggregation
- HbF reacts even less with HbA ∴ delayed presentation of sickle cell until >6 months

Consequences:
- R shift of OHDC
- Chronic haemolysis – rbc life span shortened to ~20d
- Microvascular occulsions ⇒ hypoxia & infarction

Thalassaemia
- Thalassaemia = normal structure of chains but different or absent amounts
- = imbalance between α & β chains of haemoglobin:
 - α thalassaemia =
 - deficiency α synthesis
 - due to deletion α globin genes
 - ⇒ excess non-α globins:
 - free β chains unstable & damage cell membranes
 - free gamma chains = stable but bind O2 very avidly ⇒ tissue hypoxia
 - classification:
 - silent carrier = barely detectable ↓ α chains
 - trait
 - HbH disease = deletion of 3 α globin genes ⇒ unstable tetramers of β globin
 - Hydrops fetalis = all 4 α globins deleted ⇒ free gamma chains ⇒ in-utero death
 - β thalassaemia =
 - deficiency β synthesis
 - total absence or ↓ed but detectable β globin synthesis
 - caused by point mutations affecting transcription or translation
 - ⇒ excess α chains form aggregates which damage cell membrane causing:
 - ineffective erythropoiesis
 - haemolysis
 - features:
 - skeletal abnormalities – overactive marrow
 - iron overload – from over absorption & repeated transfusions
• clinically divided based on severity of anaemia (genetic defect & whether homozygous or heterozygous) into:
 • minor – symptomless carrier state
 • intermedia – rarely requires transfusions
 • major – regular transfusions req’d otherwise quick death

• thalassaemia Rx’s:
 o long term folic acid supplements
 o blood transfusions
 o splenectomy with vaccinations & long term proph. Antibiotics
 o Stem cell transplant

Paroxysmal Nocturnal haemoglobinuria
• Chronic intravascular haemolysis
• Only acquired haemolytic anaemia
• Rbc’s have ↑susceptibility to complement mediated lysis
• Due to X linked mutation

Immune Haemolytic Anaemias
• Due to anti red cell antibodies
• Classification occurs based on Coombs test – detects
 o Serum antibodies
 o Complement on rbcs
• Types:
 o Warm antibody haemolytic - IgG
 ▪ Primary = Idiopathic
 ▪ Secondary =
 • SLE
 • Lymphomas
 • Hodgkins
 • Carcinomas
 o Cold agglutinin (antibody) immune haemolytic anaemia – IgM
 ▪ Primary = idiopathic
 ▪ Secondary:
 • Infections eg infectious mononucleosis
 • lymphomas
 o Cold haemolysis haemolytic - IgG

Methaemoglobin
• =small portion of Fe irons in Hb exist in Fe+++ state (ferric)
• unable to carry O2
• causes:
 o congenital deficiency of enzyme converting ferric ions to ferrous state
 o drugs eg SNP, prilocaine
• = a functional anaemia

Sulphaemoglobin
• also unable to carry O2

(Myoglobin)
• haem containing O2 binding protein present in skeletal mm
• has a role as O2 store
• Contains a single globin chain
By Adam Hollingworth

• Dissociation curve has a rectangular hyperbola shape
• Curve lies very L of Hb ie much higher affinity for O2
 ↓ allows optimal loading/unloading of O2 at PO2 levels which occur in muscle

Marrow Failure
• = aplastic anaemia
• idiopathic in 65% cases
• there are leukaemic, cancerous or other abnormal cells in blood or bone marrow
• can be:
 o acquired - more common
 o inherited - uncommon
• occurs due to reduction in stem cell numbers ↓ all cell lines

Clinical Features
• anaemia
• bleeding – minimal trauma, blood blisters in mouth
• infection – mouth infections

Vitamin B12 Deficiency
• diminished erythropoiesis
• B12 & folate needed for production of thymidine ⇒ building block of DNA
• Anaemia 2nd to
 o ↓production
 o abnormal rbcs ⇒ premature removal by phagocytes
• Causes:
 o Pernicious anaemia – most common
 o Pancreatitis
 o Coeliac /crohns disease
 o metformin
 \{ Uncommon, and mild B12 deficiency

Complications
• unRx’ed can ⇒ marrow failure ie pancytopenia

Pernicious Anaemia
• = autoimmune attack of gastric mucosa ⇒ ↓ intrinsic factor secretion⇒vit B12 malabsoprtion

Pathogenesis
• more common in females
• assoc with AID:
 o thyroid – 33% correlation
 o addison’s
 o vitiligo
• parietal & chief cells of stomach are replaced by mucin secreting cells

Clinical Features
• Insidious gradual onset
• Polyneuropathy: - demyelination of spinal cord tracts ⇒ spastic paresis & sensory ataxia
 \{ no neuro symptoms with folate deficiency
 o Symetrical parathesiae in fingers, toes
 o Loss vibration sense, proprioception
 o Progressive weakness
By Adam Hollingworth

Investigations
- blood film
- bone marrow
- serum bilirubin – raised due to ineffective erythropoesis
- serum B12
- vit B12 absorption test (Schilling):
 - IM injection overnight of B12
 - Take radiolabelled B12 with intrinsic factor & without
 - Look for labelled B12 in urine
 - +ve for PA if ↑B12 in urine WITH intrinsic factor

Treatment
- **intramuscular B12**
 - x6 over 1st 2wks
 - then 3monthly for life
- **oral B12 supplements**

Folate Deficiency
- found in green vegetables eg spinach, broccoli or liver & kidney
Causes
- nutritional:
 - poor intake
 - alcohol excess
 - anorexia
- antifolate drugs eg methotrexate, phenytoin, trimethoprim
- excess utilization:
 - physiological - eg pregnancy, lactation
 - pathological:
 - haematological disease eg excess rbc destruction
 - malignancy
 - inflam disease
 - malabsorption

Clin Features
- same as B12 but do not get gastric atrophy or neurological changes
Treatment
- 5mg folic acid daily

Iron Deficiency

Causes

<table>
<thead>
<tr>
<th>Diet Intake</th>
<th>IDA</th>
<th>Anaemia of Chronic Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>rare cause in Western diet</td>
<td>Ferritin ↓</td>
<td>↑ or norm</td>
</tr>
<tr>
<td>Major sources = Cereals & meats</td>
<td>Iron ↓</td>
<td>↓</td>
</tr>
<tr>
<td>Malabsorption</td>
<td>TIBC ↑</td>
<td>↓</td>
</tr>
<tr>
<td>Small bowel resection esp duodenum & jejunum</td>
<td>Blood Loss ↑ demand</td>
<td></td>
</tr>
<tr>
<td>Pregnancy/infancy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Haematology - 28
• Most commonly from GI, uterine bleeding
• Abroad: hookworm infestation of GI tract ⇒ blood loss

Clinical Features
• Signs of iron deficient anaemia:
 o Brittle nails
 o Spoon shaped nails (koilonychia)
 o Smooth Atrophic tongue
 o Angular stomatitis
 o Brittle hair
 o Syndrome dysphagia & glossitis (Plummer-Vinson syndrome)
• Symptoms from history:
 o ↓dietary intake
 o self medication with NSAIDS ⇒ GI bleeding
 o blood in faeces – from Ca lower bowel/haemorrhoids
 o duration of periods in women – Norm. = 3-5 towels/tampons per day

Investigations
• FBC & ferritin & tibc
• Blood film
• Iron Studies – electrophoresis of Hb
• Bone Marrow studies

Classification of Haemoglobinopathies
• Classification
 o Structural hemoglobinopathies
 ▪ Sickle cell anaemias
 ▪ Hb C and M
 ▪ Low and high O2 affinity Hb
 o Thalassaemias
 ▪ Alpha thalassaemia variants
 ▪ Beta thalassemia variants
 o Combined structural/thalassaemias
 o Hereditary persistance of fetal Hb (HPFH)
 o Aquired Haemoglobinopathies
 ▪ Methemoglobinemia
 ▪ Leukaemia induced disorders of Hb
Assessment of Coagulation, Platelet Function & Fibrinolysis

Bleeding Time
- Functional test of clotting
- Standardised cut made on the skin & time of bleeding measured
- Difficult to calibrate
- Good test of platelets – primary haemostasis usually reaction stopping the bleeding
 but if time is prolonged doe not indicate nature of clotting defect

Platelet Count
- Good predictive value of risk of bleeding
- Platelets need to known to have norm function
- Results:
 - <50x10^9 = assoc prolonged bleeding
 - <20x10^9 = assoc spont dangerous haemorrhages

Prothrombin Time or INR
- Assesses extrinsic & common pathways
- Method:
 - Specimen of plasma at 37deg is citrated – to bind any ionized Ca
 - Start of test = Tissue factor & Ca added
 - Time taken to coagulate = result
- Normal range 0.9-1.2
- Prolonged if:
 - Warfarin
 - Vit K deficiency
 - Liver disease
- Most commonly used to assess coumarin anticoagulants ie 7, 9, 10, prothrombin

Activated partial Thromboplastin Time (APTT)
- Ax intrinsic & common pathways
- Method:
 - Citrated plasma at 37deg combined with kaolin & cephalin
 - Excess of Ca added ⇒ time to coag measured
- Screens for adequacy of factors 9, 11, 12, PK, HMWK
- Used to adjust heparin dose
- Norm 35-45 sec
- Prolonged in:
 - Heparin
 - Haemophilia

Thrombin Time
- Assesses common pathway ie fibrinogen ⇒ fibrin
- Method:
 - Thrombin added to plasma
Time to coagulate measured

- Activated Clotting Time
 - Automated device used to assess for supratherapeutic heparinisation
 - Different brands used which have different norm values (e.g., 80-160 seconds)
 - Norm value = no heparin effect
 - Only relevant to UFH
 - Measures intrinsic pathway
 - Linear response to ↑ACT with ↑heparin
 - Works by adding factors to blood to activate clotting, e.g., kaolin or glass beads
 - False long reading seen in lupus anticoagulation

-Thromboelastogram (TEG)
 - Sample of blood placed in a cup which is then gently rotated 6x/min to simulate sluggish venous flow
 - Thin wire probe in the middle used to measure degree of coagulation
 - Clot forms around the wire
 - ↑speed of onset & strength of clot measured and displayed in different ways

- Main variables determined:
 - R time = long → ↑time to evidence of first clot ⇒ give FFP
 - K value = long → ↓speed of clot formation ⇒ give cryo
 - α angle = ↓ed angle → ↓speed of clot formation ⇒ give cryo
 - MA (max amplitude) = ↓ed size → ↓clot strength ⇒ give platelets
 - A30 (amplitude at 30min) = ↓ed size → too much fibrinolysis ⇒ give TXA
Deficiencies of Above Tests

- None will assess function:
 - Factor 13
 - Alpha2 antiplasmin deficiency
 - vWF deficiency
- ∴ always risk of excessive bleeding
- is a functional reserve in concentration of clotting factors:
 - haemophilia A = no symptoms until factor 8 level <5%
- to determine specific cause for defective clotting need to do
 - specific factor assays
 - tests for anti-factor antibodies

Fibrinolytic System

- Assessed using clot lysis time
 - is shortened in alpha2 antiplasmin deficiency
- Circulating fibrin degredation products can be assayed ⇒ some info about clot lysis
- Fibrin crosslinking can be assessed by clot solubility in 5M urea
 - ↑ed time in factor 13 deficiency
Plasma Proteins

- proteins=
 - albumin
 - globulin
 - fibrinogen
 - caeroplasmin
 - CRP
 - transferrin

- function:
 - Proteolytic (complement, coagulations, fibrinolysis)
 - Role in acid base (buffering) ~15% of total
 - Oncotic pressure ~25mmHg
 - Transport
 - Enzyme systems (α1 antitrypsin)
 - Immunological
 - Metabolic (store of amino acids/energy source)

Origin

- antibodies from lymphocytes
- other proteins mostly from liver
- albumin:
 - approx 40% intravascular
 - rest mostly in skin
 - 5-10% degraded every day; replaced hepatic synthesis 200-400mg/kg/day
 - carefully regulated
 - transported to extravascular stores by capillary vesicular transport mechanisms
 - makes up 80% of oncotic pressure
 - primary transporter of many substances:
 - bili, Ca, hormones (T3 & T4)
 - CO₂ – as carbamino compounds
 - drugs – 2 main binding sites – BZ & warf sites

- Globins:
 - α1 -
 - acid glycoprotein (αag)–
 - acute phase reactant
 - carrier for most basic drugs
 - low capacity/low conc system
 - α2 eg haptoglobin – scavenges globins from Hb
 - β eg haemopexin – scavenges free haem
 - γ – Igs – from B/plasma cells

- Others
 - coag factors
 - CRP
 - complement
 - cytokines
Hypoproteinaemia
• stores used up before hypoproteinaemia occurs
• causes:
 o prolonged starvation
 o malabsorption syndromes
 o liver disease
 o nephrosis
 o afibrinogenemia – congen poor blood clotting
Blood Products & transfusion Medicine

- transfusion involves safe & compatible blood/products from donor to recipient
- compatibility between donor rbc antigens & recipient plasma antibodies is vital to prevent haemolytic reactions

Donors

- criteria for donor:
 - voluntary, healthy, unpaid
 - <13% volume to be taken
 - 18-60 or 70 (if regular)
 - Hb >135g male, 125g female
- Self deferral eg Hx HIV/HBV/HCV, malaria, fever, foreign travel, body piercing, tattoos
- Blood testing:
 - HBV:
 - HBsAg - low infective carrier
 - antiHBc = evidence of past infection
 - HCV – anti HCV
 - HIV, anti HIV1+2, p24 antigen
 - Treponema – also serves as marker for other STDs
 - HTLV 1+2 antibodies
 - CMV – antibodies

Blood Grouping (ABO & Rh)

- Testing of ABO & Rh(D) on donor & recipient
- testee rbc suspended in saline ie no serum
- serum with known antibodies added to test solution
- watch for agglutination ∴ work out grouping
- this done with
 - IgM solutions (ABO)
 - IgG solution (rhesus)
- serum containing IgM antibodies - anti A, anti-B, anti-AB
- serum with known gp A, B, O rbcs (reverse grouping)
- anti serum containing an IgG potent enough agglutinate Rh(D) +ve cells in saline
 - weak agglutination due to D variants may be missed

Blood Screening

- testing of recipient +/- donor blood
- testee serum taken; rbc which are group matched BUT with known minor antibodies (Kell/Duffy) are added.
 - Agglutination proves presence of minor antibodies

Coombs Test

- done to test for unexpected IgG weak antibodies
- done as indirect test
 - testee serum added to Coombs rbc’s - this binds IgG onto rbc
 - Coombs rbc’s with antibodies bound are washed away from testee serum
Coombs reagent added to cells which contains anti-human antibodies which bind to IgG on rbc ⇒ agglutination = positive Coombs test

- control sample also done to check activity of Coombs reagent
- does not add much safety to group & screen – see next

Cross Match
- involves:
 - group testing – saline agglutination test (as above)
 - screen – as above
 - Coombs Test
- rarely done in ANZ as only adds 0.01% extra of safety on top of group and screen

Prior to Administration of Blood Products
- donor:
 - self deferral
 - disease testing
 - group & screen
- recipient:
 - group and screen

Safety of Blood Transfusion & Degree of Compatibility testing

<table>
<thead>
<tr>
<th>Extent tested</th>
<th>Relative safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO-compatible</td>
<td>99.4%</td>
</tr>
<tr>
<td>ABO + Rh compatible</td>
<td>99.8% (1:1000 react)</td>
</tr>
<tr>
<td>ABO + Rh + neg antibody screen aka group & screen</td>
<td>99.94% (1:10 000)</td>
</tr>
<tr>
<td>ABO + Rh + neg ab screen + Coombs’ test (“full X-match”)</td>
<td>99.95% (1:500 000)</td>
</tr>
</tbody>
</table>

∴ Coombs’ test adds very little xtra and is usually omitted in routine testing.

Blood Products

Whole Blood
- ~400-500ml blood taken
- 63ml anticoagulant added:
 - citrate-phosphate-dextrose (CPD)
 - CPD-adenine
 - SAG-M or ADSOL: saline, adenine, glucose + mannitol
 - dilutes plasma by ~20%
- Additives:
 - Citrate: combines with & neutralises Ca ∴ anticoagulates blood
 - Phosphate: added as buffer + source of phosphate for metabolism
 - Adenine: provides substrate for ATP synthesis ∴ prolongs shelf life to ~35ds
 - Dextrose: for rbc metabolism – glycolysis – (rbc has no mitochondria)
- Blood stored at 4-6deg C
 - low temp inhibits metabolism & inhibits bacterial growth
- Properties of whole blood depend on
 - anticoag added
duration of storage
• get in massive transfusion protocols – contains all clotting factors

Packed Red Cells
• obtained by centrifugation or sedimentation of 1 unit of whole blood
• ~200-250mls plasma removed
• has HCT ≥0.75

RBC Substitutes
• stroma free Hb=
 o special Hb characteristics:
 ▪ cross linked,
 ▪ surface conjugated
 ▪ polymerized
 ▪ encapsulated
 o ⇒ ↑half life & ↓nephrotoxicity
 o problems:
 ▪ ↑oncotic pressure
 ▪ half life 6hrs
• perflurocarbon emulsions:
 o advantages:
 ▪ long shelf life
 ▪ stored at room temp
 ▪ subjected to viral inactivation
 ▪ universal biocompatibility
 ▪ religious acceptance
 o problems:
 ▪ half life 24-28hrs
 ▪ require Fio2 100%
 ▪ can interfere with many lab tests
• applications of substitutes:
 o trauma/military
 o surgery +/- acute normovolaemic haemodilution

Platelets
• available as:
 o standard unit = from single donor or pooled from 4-6 units blood
 o adult dose = apheresed from single donor = 5-6std units
• special storage conditions = extend shelf life to ~5days
 o temp 20-26deg – usually 22deg
 o special packs made from polyolefin plastic = allows aeration
 o constant agitation needed
• 1 std unit contains ~6x10^10 platelets .∴ 1 std unit transfused ⇒ ↑plt count by ~10x10^9/L per m2 body s.a.
• risks:
 o plts express HLA class I antigen
 o contamination by wcc & rbc's can cause allo-immunisation – esp with repeated transfusions
 ⇐⇒ refractoriness to subsequent platelet transfusions
 • ∴ ABO & Rh compatible plts are usually used
• HLA matched plts used for plts with HLA antibodies
 o Disease transmission – sepsis quoted 1:12,000
• 1/3 of transfused plts are sequestered in spleen

ASA Recommendations on Plt transfusion
• ↑consumption ie ITP = prophylactic platelet transfusion rarely effective
• surgery =
 o <50 - give platelets if high risk surgery
 o 50-100 = determine risk eg aspirin, renal disease, type of surgery
 o >100 = Rarely needed if >100
• if low risk surgery of norm vaginal delivery can consider even if platelets <50
• consider platelet t/f if known platelet dysfunction or risks of despite platelet count:
 o CPB
 o Renal failure
 o uraemia

FFP
• Prepared from fresh blood ⇒ frozen rapidly to -30deg (must be frozen <8hrs post collection)
• Collected from single donor – via separation or apheresis
• Undergoes viral inactivation = UV light/methylene blue/pasteurization/solvent
• Lasts 1yr
• Contains:
 o Factors (labile 5&8) and
 o Stabile factors (1,2,7,9,10,11,12, AT3, protein C+S)
 o Plasma lipids
• 1 unit FFP ⇒ ↑all coag factors by 2-3%
• indications:
 o reversal of warf 5-8ml/kg
 o Antithrombin 3 deficiency – with heparin Rx
 o TTP & HUS
 o Rx of immunodeficiencies
 o Massive blood transfusions

Cryoprecipitate
• Made from freshly separated plasma by
 o freezing at -70degs
 o rapid thawing at 4degs
• stored at -30deg, shelf life 1yr
• contains rich amounts :
 o f8 = 80unuts
 o fibrinogen – 250mg
 o fibronectin
 o vWF
 o F13
• 1 unit ⇒ ↑fibrinogen by 0.5g/l
• indications:
 o vWF unresponsive to DDAVP
 o congen fibrinogen deficiencies – rare
 o DIC
Factor VIIa

- Mode of action:
 - Activated factor 7 effectively bypasses steps coagulation steps needed f8 & f9 by upregulating extrinsic pathway in conjunction with tissue factor → now thought unlikely mechanism
 - Haemostatic function by platelets activation

- Is a vit K dependant factor

- Indications:
 - Severe refractory bleeding (unlicensed & controversial)
 - Haemophilia A or B – not responding to specific factor administration 2nd to antibody creation/inhibitors
 - Congen factor 7 deficiency

- Risks:
 - Arterial thrombosis
 - 50-90mcg/kg

Changes during Blood Storage

- platelets:
 - non functional within 48hrs if stored at 4deg
 - platelets in massive transfusion more impt than coag factor deficiency (dilutional thrombocytopenia)

- WCC:
 - Granulocytes lose phagocytic + bactericidal properties within 4-6hrs post collection
 - Antigenic properties remain

- Rbc:
 - ↑spherical with time ⇒ ↑fragility ⇒ ↑ed chance haemolysis ⇒ ↑free Hb
 - if rbc’s transfused at max recommended storage time (35d) = 10-20% destroyed ≤24hrs

- ↓2,3DPG (& ↓ATP):
 - in CPD-A blood:
 - @14days =50% 2,3DPG
 - @28days =5% 2,3DPG, ATP 75%

- microaggregate formation:
 - made by platelets + leucocytes (10-40um)
 - can cause pulmon dysfunction
 - microfilters does not help

- coagulation factors:
 - f5 & f8 = labile factors:
 - f5 @14d = 50%
 - f8 @24hrs = 50%, @21d = 6%
 - f8 should be produced endogenously anyway with stresses (if not haemophiliac)
 - levels of other factors not ↓ed up to 21days
 - use of packed cells ie less plasma will ⇒ factor dilution

- biochemical:
 - ↑serum K:
 - @7days K – 12mmol/L
 - 30days = 30mmol
 - not a problem after transfusion as
 - restoration of rbc metabolism ⇒ reuptake of K into rbc
 - catecholamines ⇒ K uptake
- dilutional effect via distribution through ECF
- slow transfusion ⇒ time for above processes
 - ↑rbc intracellular sodium
 - ↓pH – 6.7 @28days
 - ↓calcium

Complications of Transfusion
- ~3% react to blood
- fatal reaction = rare : 1 : 50,000 transfusions

Classification:
- by type
- by time

By Type
- disease transmission
- transfusion reactions
- metabolic/electrolyte abnormalities
- microaggregates
- immunomodulation
- transfusion related acute lung injury (TRALI)
- other

1. **Disease Transmission**
- HCV:
 - Anti HCV antibodies
 - Nucleic acid amplification test (NAT):
 - Has ↓ed window period for missing diagnosis of
 - HIV (22d ⇒ 10d)
 - HCV (70d ⇒ 10d)
 - Risk 1:250,000/unit ANZ
 - Responsible for 90% transfusion hepatitis
 - Needlestick 1.8% risk of getting HCV
- HBV:
 - Tests:
 - Hbs-Ag
 - Anti-HBV antibodies
 - Risk = 1:400,000/unit
 - Responsible for ~10% transfusion hepatitis
 - Needlestick ~30% risk!!
- HIV:
 - Tests:
 - Anti-HIV 1+2 antibodies
 - P-24 ag
 - NAT
 - Risk 1:1,000,000/unit (aus) – no known transmission in NZ
 - Needlestick ~1%
- CMV:
 - Most common viral transmitted disease via blood transfusion
usually fairly innocuous for most people
o Only selected units tested then kept for neonates, immunosuppressed
 ➔ anti-CMV antibodies
o Risk <1%/unit
• Bacterial contamination:
o Esp:
 ▪ Gram +ves
 ▪ Yersinia
 ▪ Pseudomonas
o Far more common than risk of viral transmission
o Risk 1:50 - 66,000
• Other:
o HTLV 1+2, malaria, NVCJD

2. Transfusion reactions
• Allergic:
o Against incompatible plasma proteins
o Mild = common
 ▪ rash/pruritis/fever
 ▪ slow infusion rate
o Moderate:
 ▪ stop, antihistamine
 ▪ use washed rbcs/platelets for subsequent transfusions
o Severe:
 ▪ anaphylaxis
 ▪ Due to infusion of IgA to IgA deficient pt who has anti-IgA antibodies (1:700)
 ▪ use washed rbcs/platelets in future
o Less common with leucodepletion
• Febrile reactions:
o (non-haemolytic type)
o Usually occurs <4hrs
o Caused by
 ▪ recipient antibodies against donor leucocytes
 ▪ induced by cytokines in donor rbc or platelets
o Unusual fever >38, headache, N&V, rigor, CP
o Mild: slow rate, antipyrexic, tramadol for shivers
o Severe: stop. Future transfusions:
 ▪ Buffy coat rbcs
 ▪ Leucodepleted
 ▪ HLA compatible platelets
o (multips get more severe reactions than primips)
o Less common with leucodepletion
• Haemolytic reactions:
o 2nd to ABO/Rh incompatibility
o 50% caused by clinical error
o 1:250,000 – 1million
o Symptoms:
 ▪ Initial: fever/rigor. Restlessness, chest pain, ↓bp
 ➔ NB fever & rash more likely to be allergic reaction (not ABO)
 ▪ Later: Haemolysis of bloods (anaemia, ↑unconjugated bili, ↓haptoglobin), renal failure
 from stromal & lipid contents precipitating in kidney

By Adam Hollingworth
o Rx:
 ▪ stop stat. send donor & recipient sample to lab for repeat typing
 ▪ maintain UO – IVF, furosemide, mannitol
 ▪ optimise DO2

• delayed haemolytic reactions:
 o 1:1000 ⇒ 1:250 000
 o 2nd to antibodies against minor donor rbc antigens
 o usually 10-14 days post
 o supportive Rx

3. Metabolic/Electrolyte Reactions (~storage lesion)

• ↓pH:
 o due to:
 ▪ lactic acid production from rbc
 ▪ citrate
 o pH blood 6.9-7 @21 days
 o but uncommon & usually only in massive transfusions
 o more common is slight met alkalosis: citrate metabolised to HCO3

• ↓2,3DPG:
 o ⇒ L shift OHDC
 o usually not impt

• ↑K:
 o blood @21 days = 30mmol/L
 o usually not an issue
 o give Ca if needed

• ↓Ca:
 o citrate toxicity
 o not problem unless >1 unit/5 min
 o risk factors:
 ▪ liver dysfunction
 ▪ hypothermia
 ▪ hyperventilation

• ↓Mg

4. microaggregates

• clumping of plts & WBCs in storage (10-40um) ⇒ pulmonary dysfunction
• no fix

5. Immunomodulation

• caused by sensitisation to donor wbc’s
• causes:
 o ↑incidence bacterial infections
 o recurrence of some cancers
 o (but good post organ transplants)
• leucodepletion may ↓immunomodulation

6. TRALI

• non cardiogenic pulmon oedema – similar to ARDS
• = SOB, hypoxia, ↓bp, fever
• causes:
 o HLA antigens cause severe acute microvascular injury
 o High antigen titre in donor plasma reacts with recipients neutrophils
already localised in pulmon vasculature

- develops <2-4hrs ⇒ resolve 4days
- 90% recovery
- much less common 2nd to leucodepletion

7. Other
- volume overload
- DIC/ARDS
- Religious issues
- Graft vs Host:
 - Live transfused lymphocytes engraft in host ⇒ immune response against host cells
 - Rash, ↓ECC, ↓plts ⇒ sepsis, death
 - impt in:
 - immunocompromised
 - prem babies
- leucodepletion not that helpful but gamma irradiation is – must do if to high risk pt
- 90% mortality

By Time
Early (<24hr)
- include:
 - acute haemolytic reactions eg ABO or rhesus incompatibility
 - bacterial contamination:
 - febrile (non haemolytic) reactions – from HLA antibodies
 - allergic reaction:
 - Anapylaxis
 - fluid overload:
 - transfusion related lung injury (TRALI) –

Late (>24hrs)
- include:
 - delayed haemolytic –
 - infections (viruses hep B/C, HIV, bacterial sepsis, protozoa, prions)
 - iron overload
 - graft versus host disease
 - post transfusion purpura =
 - ↓platelet count 5-7days post transfusion:
 - antibodies to platelet specific antigen
 - usually women who have been pregnant
 - need IV immunoglobulin & platelet transfusion
 - potentially fatal
 - immune modulation

Massive Transfusions
- >10 units in 24 hours or transfusion of entire circulating blood volume in 24hrs
- complications:
 - citrate toxicity (=↓Ca)
 - if t/f rate >1litre/10min ie 3units
 - tremor/tetany/ST & QT prolongation
(note Ca level never low enough to contribute to bleeding)

- \uparrowK:
 - only issue if very rapid, pt acidotic, hyperK already
 - Give Ca, insulin/dextrose

- \downarrow clotting factors/platelets
 - esp low platelets & labile factors 5&8

- hypothermia –
 - drop 0.5 degC/unit of blood unless warmer
 - \downarrow temp leads to:
 - malignant arrhythmias
 - \downarrowDO2 via Bohr effect
 - aggravation of citrate toxicity

- \downarrow2,3 DPG – use of CPD-adenine \downarrows problem as 2,3 \downarrows slower

- acidosis
- or alkalosis – citrate metabolised to bicarbonate

- microaggregates: pulmonary damage +/- ARDS

- volume overload

Universal Leucodepletion

- bedside vs lab
 - lab = better as better quality control, cost effective & hygiene
- blood passed through a filter 20-40um
- leucodepleted = wbc $<5\times10^6$/6units

- advantages:
 - \downarrow febrile reactions
 - \downarrowsensitisation with human WBC antigens – esp impt in bone marrow pts
 - \downarrowplts refractoriness
 - $\leftarrow<$ rise post 2 standard units
 - \downarrow/prevent CMV/NVCJD transmission
 - possible:
 - \downarrowHTLV1+2 transmission
 - \downarrowimmunomodulation
 - \downarrowTRALI
 - \downarrowbacterial contamination

- disadvantages:
 - loss of rbc & platelets
 - release of bradykinin – only an issue with bedside