GI Physiology

Liver 2
 Functional Anatomy 2
 Hepatic Circulation 3
 Functions of Liver 4

Evaluation of Liver Function 9

GI Secretions 10
 Mucus 10
 Saliva 10
 Gastric Fluid 11
 Bile 13
 Pancreatic Juice 14
 Intestinal Fluid 14
 GI Regulators 14

Physiology of Swallowing 16

Gastric Motility & Emptying 17

Factors Preventing Reflux of Gastric Contents into oesophagus 18

Physiology of Nausea & Vomiting 19
Liver

Functional Anatomy

- impt function is a filter between blood coming from GI tract and blood from rest of body
- blood from intestines reach liver via portal vein
- portal vein \Rightarrow sinusoids between plates of hepatic cells \Rightarrow central vein \Rightarrow coalesce to hepatic veins \Rightarrow IVC \Rightarrow hepatic artery blood also empties into sinusoids
- bile is formed on the other side/adjacent to each plate of liver cells in bile canaliculi:
 - bile canaliculi \Rightarrow intralobular bile ducts \Rightarrow interlobular bile ducts \Rightarrow R or L hepatic duct \Rightarrow join outside liver = common hepatic duct
- common hepatic duct joins with cystic duct (from GB) \Rightarrow common bile duct \Rightarrow (usually) joins with main pancreatic duct prior to \Rightarrow enter duodenum at duodenal papilla (surrounded by sphincter of oddi
- sphincter of oddi:
 - usually closed
 - to open:
 - gastric contents into duodenum \Rightarrow CCK release \Rightarrow gastrointestinal hormone relaxes sphincter
- in each hepatic lobule, plates of hepatic cells = 1 cell thick
- microcirculation:
 - large gaps found between endothelial cells allow movement of blood contents into hepatocytes and vice versa
 \Rightarrow sinusoids = highly permeable
 - Kupffer cells (phagocytes) anchored to endothelium of sinusoids and project into lumen
- transit time across lobule from portal lobule \Rightarrow central hepatic vein \Rightarrow 8.4 secs
Hepatic Circulation

- functional unit of liver = acinus
- each acinus found at end of vascular stalk containing (akin to aveoli or grapes on a stalk):
 - terminal branches portal vein
 - hepatic arteries
 - bile ducts
- acinus is surrounded on periphery by hepatic veins
 - thus blood flows from central to peripheral outwardly
- acinus divided into zones:
 - zone 1 = central - well oxygenated
 - zone 2
 - zone 3 - peripheral - least well oxygenated . susceptible to anoxic injury
- liver has 100,000 acini
Functions of Liver

1. Metabolic:
 - CHO
 - Lipid & cholesterol
 - Protein & plasma protein production
 - fat soluble vitamins
2. Endocrine
3. Detoxification / Metabolism of drugs and xenobiotics
4. Immunologic
5. Coagulation
6. Acid Base
7. Bile formation
8. Reservoir for blood
9. Urea formation
10. Storage function
11. Haematopoiesis

1. Metabolism

CHO
- CHO metabolism:
 - glycogen metabolism (glycogenlysis, glycogen synthesis + storage)
 - GNG
 - conversion of galactose \(\Rightarrow \) fructose \(\Rightarrow \) glucose
- glucostat function:
 - buffering of BSL: removes glucose post prandial, and returns it when needed
 - low BSL \(\Rightarrow \) opposite reaction ie production of glucose from non-glucogenic precursors

Lipid Metabolism
- synthesis of most lipoproteins
- synthesis of large amounts cholesterol & phospholipids:
 - 80% cholesterol made \(\Rightarrow \) bile acids
 - 20%\(\Rightarrow \) lipoproteins eg LDL
- conversion of CHO & protein \(\Rightarrow \) fat:
 - occurs almost exclusively in liver
 - then transported in lipoproteins \(\Rightarrow \) adipose for storage
- FA \(\beta \) oxidation for liver energy and other organs
- ketone production:
 - neutral fats split into glycerol + FA
 - FA \(\Rightarrow \) \(\beta \)-oxidation \(\Rightarrow \) acetyl CoA \(\Rightarrow \) citric acid \(\Rightarrow \) 9 kCal/g fat
 - liver cannot utilise all acetyl CoA formed \(\Rightarrow \) 2 acetylCoA condense (deacylase enzyme) \(\Rightarrow \) acetoacetylCoA
 - CoA removed \(\Rightarrow \) acetoacetic acid \(\Rightarrow \) \(\beta \)-hydroxybuturic acid & acetone
 - ketone bodies distributed to rest of body where reconverted to acetylCoA for citric acid cycle energy eg heart

Protein Metabolism
- =essential function for life
- deamination of aa’s \(\Rightarrow \) needed prior to energy utilisation

By Adam Hollingworth
formation of urea as part of alanine cycle
plasma protein production:
 • acute phase proteins
 • albumin - most significant
 • clotting factors
 • steroid binding & other hormone binding proteins
 → (liver makes all proteins except Immunoglobulins)
• interconversions between different amino acids

2. Endocrine
• 25 (OH) cholecalciferol production:
 • (OH)\(_2\)D - created in skin from UV light
 • 25-(OH)\(_2\)D - created in liver by hydroxylation
 • 1,25 (OH)\(_2\)D - created in kidney by hydroxylation
• synthesis of hormone precursors
• inactivation of hormones
• EPO production - especially fetal

(OH)\(_2\)D \(\Rightarrow\)

3. Detoxification
• detox of substances from gut or elsewhere e.g. steroids, hormones, toxins etc
• biochemical:
 • cytochrome P450 enzymes in hepatocytes:
 - phase I reactions (oxidation, hydroxylation)
 - phase II reactions (esterification)
• metabolites secreted into bile for elimination

4. Immunologic
• liver = largest organ in tissue macrophage system (RES)
• RES function:
 • Ag processing & presentation (MHC-2)
 • phagocytosis in tissues of bacteria & cell debris
 • removal of bacteria, old red blood cells, debris in blood
 • secretion of cytokines
• blood reaching liver from intestine via portal vein contains large amount of bacteria
• Kupffer cells
 • = part of RES:
 • line venous sinusoids
 • very effective at eliminating bacteria from portal venous blood (~99%)

5. Coagulation
• most of coag proteins & protein C & S

6. Acid Base & Liver
• liver can be NET producer or consumer of H⁺
• CO2 production:
 • from complete oxidation of substrates
 • liver VO₂ = 20% of whole body \(\therefore\) produces 20% of body CO2 \(\Rightarrow\) lungs
• Metabolism of acid anions:
 • endogenous:
 • lactic acid
 • ketones
 • \(\Leftrightarrow\) metabolism of these does not = NET ↑H⁺ ie metabolism of lactate uses H⁺ produced when it was made
• exogenous:
 - eg acetate & gluconate (plasmalyte), lactate (ringers), citrate (transfusions)
 - metab of these anions consumes H+ $$\Rightarrow$$ NET production of bicarbonate anions
• amino acid metabolism:
 • incomplete metab $$\Rightarrow$$ fixed acid production
 • results in av NET production of 70% of total daily fixed acids
• metabolism of ammonium (NH4+):
 • conversion of NH4+ $$\Rightarrow$$ urea produces a H+ ion

7. Bile
• bile =
 • water
 • bile salts:
 - steroid compounds made in liver from cholesterol
 - conjugated with glycine or taurine
 - excreted as salts with Na or K
 - diff types:
 • primary = formed in liver
 • secondary = made in colon by bacterial action on primary acids
 • bile pigments - biliverdin & bilirubin
 • alkaline electrolyte solution (similar to pancreatic juice)
• 500ml secreted each day
• some contents of bile are reabsorbed in intestine & returned liver
 $$\Rightarrow$$ enterohepatic circulation
• function of bile acids
 • facilitate lipid absorption from small intestine via:
 - emulsification (surface tension ↓ function) - cause fat to break up into minute particles
 - lipid micelle formation (water soluble):
 • bile acids (& phospholipids) are amphipathic
 • above critical micelle concentration $$\Rightarrow$$ all bile salts create micelles ie hydrophyllic on outside, hydrophobic on inside
 • lipids, cholesterol, Fa, fat soluble vits collect in centre of micelle
 • then transported across brush border of enterocytes
 - without bile acids $$\Rightarrow$$ 40-50% fat appears in faeces
 • major excretory route for lipid soluble waste products

Bilirubin Metabolism & Excretion
• bilirubin made in tissues from breakdown of Hb:
 • rbc life span ~120 days, Hb 150g/l, total Hb = 750g
 • daily breakdown = 750/120 = ~6g/day
• rbc removed
 • mostly by spleen (liver & BM too)
 • abnormal rbc's recognised by RES macrophagues $$\Rightarrow$$ Hb break down
• 10% rbc breakdown in circulation:
 • Hb dissociate into α + β dimers - bind to haptoglobin
 • haem binds to haemopexin
 $$\Rightarrow$$ to prevent excretion in urine & assoc iron loss
• breakdown products of Hb:
 • haem $$\Rightarrow$$
 - degraded by macrophage haem oxygenase to yield:
 • iron released: Fe++ $$\Rightarrow$$ Fe++++ $$\Rightarrow$$ into body iron pool
 • biliverdin $$\Rightarrow$$ reduced to bilirubin $$\Rightarrow$$ release into circulation
• carbon monoxide - only endogenous source of CO
• bilirubin bound to albumin in circulation and flows to liver
• bilirubin able to dissociate from albumin ⇒ free bilirubin enters liver via organic anion transporting polypeptide (OATP) (facilitated diffusion)
• in hepatocyte cytosol: conjugated to glucuronic acid (catalysed by glu-cur-on-yl transferase)
• glucuronic acid ⇒ bilirubin glucuronide (more water soluble than bilirubin)
• bilirubin glucuronide transported against gradient by active transport into bile canaliculi
• small amount of bilirubin glucuronide escapes into blood ⇒ bound less tightly to albumin ⇒ excrete in kidneys
• in intestine:
 • intestinal mucosa :
 - impermeable to conjugated bilirubin
 - permeable to
 • unconjugated bilirubin
 • urobilinogens
 • 50% bilirubin glucuronide broken down by gut bacteria into urobilinogens
• urobilinogens:
 • excreted in stool (most)
 • reabsorbed (some):
 • excreted again via liver into intestine
 • 5% circulation ⇒ urine

Jaundice
• =free or conjugated bilirubin accumulates in blood ⇒ yellow jaundice (icterus)
• hyperbilirubinaemia may be due to:
 • ↑ed production of bilirubin ie haemolytic anaemia
 • ↓uptake of bilirubin into hepatic cells
 • disturbed intracellular protein binding or conjugation
 • would see ↑free bilirubin on testing
 • disturbed secretion of conjugated bilirubin into bile canaliculi
 • intra-extra-hepatic bile duct obstruction
 • would see ↑conjugated bilirubin (bilirubin glucuronide)

Glu-cur-on-yl transferase Activity
• works on many other substances than just bilirubin
• eg steroid hormones and various drugs
• drugs can upregulate this enzyme system eg barbituates, antihistamines, anticonvulsants

8. Reservoir for blood
• Norm liver blood volume ~500ml ie 10% circulating volume
• ↑RAP ⇒ ↑liver blood volume up to 1litre 2nd to back pressure
• liver able to mobilise ~350mls blood to circulation with acute SNS stimulation

9. Urea Production
• levels must be carefully controlled as is toxic to CNS & freely permeable across bbb
• liver only organ which complete urea cycle is expressed:
 • converts circulating ammonia ⇒ urea ⇒ excreted in urine
• ammonia created from:
 • colon
 • kidneys
 • breakdown rbcs (less)
 • metabolism of mm (less)
• ammonia enters hepatocyte mitochondria ⇒ converted to carbamoyl phosphate ⇒ reacts with ornithine ⇒ citrulline
• citrulline cytoplasmic reactions ⇒ produce arginine ⇒ dehydrated to
 • urea - small molecule diffuses back into sinusoidal blood ⇒ kidneys for excretion
 • ornithine - recycled for another cycle
• hepatic encephalopathy:
 • from ↑level of circulating ammonia
 • result from:
 - loss functional hepatocytes
 - shunting of portal blood around hardened liver
 • attempt to ↓ammonia load coming from liver using lactulose which traps luminal ammonia in
 ionized form

10. Storage Functions
• stores:
 • glycogen - glucostat function
 • triglycerides
 • lipid soluble vitamins:
 - A - enough for 10 months
 - D - enough for 4 months
 - E
 - K
 • folic acid,
 • B12 - enough for 1 yr
 • iron - except for iron in Hb, liver = greatest store of Fe in form of ferritin
 • copper
• blood capacitance function with volume 450mls

11. Haemtaopoiesis
Evaluation of Liver Function

- tests used to delineate:
 - hepatic function
 - hepatic damage
 - specific markers of liver disease

- aminotransferases:
 - =intracellular enzymes eg AST (<50), ALT (<30)
 - elevation ~ liver cell damage
 - limited by fact that other organs also contain same enzymes eg heart, brain, skel mm, kidneys

- alkaline phosphatase (ALP) (30-120)
 - usually indicates cholestasis from any cause
 - can be intra or extra hepatic
 - found in canalicular & sinusoidal membranes of liver
 - NB ALK is also derived from:
 - Bone: raised levels = Pagets/osteomalacia/bony mets
 - Placenta in pregnancy

- albumin (30-50)
 - good indicator of hepatocyte function
 - better use n chronic liver disease
 - albumin half life = 20days

- coagulation factors:
 - short half life ie better for acute Ax
 - most = hours
 - fibrinogen = 4days
 - INR best function
 - failure to correct INR with vit K signifies sig hepatic disease

- bilirubin (<30):
 - haemolysis => ↑unconjugated bili (indrect bili)
 - cholestasis & hepatocellular dysfunction => ↑conjugated bili

- Gamma GT (<50 male; <30 female)
 - microsomal enzyme which can be induced by:
 - alcohol - useful screen for alcohol abuse
 - enzyme inducing drugs eg phenytoin

- αFP = marker for primary liver carcinoma
- ANF = 75% with chronic active hepatitis
- INR:
 - invitro test of extrinsic pathway
 - tests liver ability to produce vit K dependant clotting factors
 - not particularly sensitive

- BSL -
 - will ↓in end stage liver disease
 - sign of fulminant disease

- MEGX:
 - measure this metabolite of lignocaine after a standard dose
 - experimental use only
GI Secretions

Mucus
- mucins = high molecular weight glycoproteins
- secreted by
 - Brunner’s glands in duodenum
 - surface epithelial cells throughout GIT
 - Goblet cells in mucosa of small & large intestine
- main functions:
 - lubricate whole GIT
 - physical barrier/protect against pH changes

Saliva
- secretions may be:
 - serous
 - mucous
 - mixed
- parotid = serous
- sublingual & smaller glands = mucous
- submandibulary = mixed
- saliva production:
 - as saliva flows out of ducts:
 - Na & Cl extracted
 - K & HCO3 added
 - ducts impermeable to water ⇒ removal of Na ⇒ hypotonic saliva
 ⟹ as speed of saliva creation ↑s less time for Na extraction ∴ less hypotonic
- composition:
 - slightly hypotonic compared to plasma
 - electrolytes: Na 15, HCO3 50-70, K 30 mmol/L
 - alkaline - neutralise gastric acid reflux
 - proteins - low
 - α amylase from parotid gland ⇒ CHO digestion
 - lingual lipase from tongue mucosa glands ⇒ fat digestion
 - mucins - lubrication
 - immunity for oral cavity = lysozyme & IgA
 - blood Ag’s
 - supersaturated solution of Ca to stop teeth dissolving
- Rate of excretion = 5ml/hr @ rest ie 1-1.5L/day:
 - 2/3 from parotid
 - 1/4 from submandibular
- glands innervated by autonomic ns:
 - PNS = (most impt) ↑volume serous (parotid) & mixed (submandibular)
 - SNS = little influence on volume but ↑s proteinaceous content
- function:
 - facilitate swallow
 - keep mouth moist
 - solvent for tasting
 - aids speech
- keeps teeth clean
- antibacterial
- buffer to keep oral pH at ~7

Gastric Fluid
- secretion ~2.5L/day up to ~150ml/hr when stimulated
- fluid = isosmotic
- H+ 100, Na 40, Cl 150, K 10, HPO4, SO4
- pH 1-2
- body & fundus of stomach:
 - parietal (oxyntic) cells ⇒
 - HCl - sterilse meal & hydrolysis of dietary macromolecules
 - intrinsic factor - impt for later B12 absorption
 - chief (zymogen, peptic) cells ⇒
 - pepsinogens - precursor of pepsin for protein degradation
 - gastric lipase - fat digestion
 - Enterochromaffin like cells (ECL cells) ⇒ histamine secretion + motilin
 - surface mucus cells ⇒
 - mucus
 - trefoil peptides - stabilise mucus bicarb layer
 - HCO3 secretion
- antral cells:
 - G cell ⇒ gastrin
 - D cell ⇒ GIH (somatostatin)

Regulation of Secretion
- 3 phases of gastric secretion:
 - cephalic phase -
 - anticipatory prior to food arriving
 - vagal mediated
- gastric phase
- intestinal phase

3 primary stimulators of secretion:
- G cells in antrum:
 - release gastrin hormone
 - stim for release:
 - vagal ⇒ gastrin releasing peptide (GRP) = neurotransmitter from enteric nerve endings
 ⟷ ie atropine does not affect it as GRP not ACh involved
 - oligopeptides in gastric lumen
 - stretch
 - Ca
 - adrenaline
 - inhibitors for release:
 - gastric acid
 - GIH
 - secretin/GIP/glucagon/calcitonin
- gastrin action:
 - via blood ⇒ fundus of stomach where actions include activating:
 - Chief cells ⇒ pepsinogen & lipase
 - parietal cells ⇒ HCl, intrinsic factor
 - ECL cells ⇒ histamine release
 ⟷ histamine - provides ↑ed stim for ↑parietal cell release via H2 receptors
 - trophic action ⇒ ↑growth of GI mucosa
- ACh from enteric nerve endings in fundus ⇒ parietal & chief cell release

overall inhibitors of secretion:
- ↑acidity of gastric fluid ⇒ D cells release of GIH (somatostatin) ⇒ inhibition of G & ECL cells
- contents in duodenum: CHO, fat & acid
- drugs: PPIs, H2 blockers

Overall stimulators:
- cephalic phase:
 - vagal output ⇒ ACh release & GRP release
 - emotions
 - hypoglycaemia, alcohol, caffeine
- gastric phase:
 - presence of meal in stomach
 - stretch receptors in stomach
 - meal buffers acidity of stomach which impairs GIH mediated autoregulation of gastric secretion ⇒ ↑secretion
- intestinal phase:
 - ↑GIH release ⇒ termination of secretion
Parietal Cells
- highly specialised:
 - mitochondria ++
 - H,K,ATPase aka proton pump:
 - move H+ ions out of parietal cell against conc gradient of >1 million
- activation of parietal cell ⟹
 - @rest proton pumps in intracellular tubovesicles
 - activation ⟹ proton pumps move to apical membrane (canaliculi)
 - pumps begin secreting H+ + Cl
 - OH reacts with CO2 ⟹ HCO3 (carbonic anhydrase) ⟹ secreted into blood in exchange for Cl
 - Cl passed through cell and secreted with H as HCl
- 3 agonists of parietal cell:
 - gastrin
 - ACh
 - histamine - ↑cAMP
- agonists work in synergy .: if stop one pathway has ↑ed effect on other eg H2 antagonists

Bile
- =primary hepatic secretion
- contains:
 - bile salts
 - HCO3
 - excretory bile pigments (bilirubin + biliverdin)
 - cholesterol
 - inorganic salts
 - fatty acids
 - lecithin
 - alk phosphatase
 - steroids
 - heavy metals
 - drugs
- all concentrated to 100-200 in gall bladder water
- pH ~8
- 0.5L enters duodenum/day
- produced continually but stored in GB
• secretion controlled by -ve feedback from recycled bile salts
• function:
 • bile salts ↓ surface tension
 • assist with emulsification of fats
 • phospholipids & monoglycerides ⇒ form micelles with outward facing hydrophilic surfaces

Pancreatic Juice
• alkaline watery secretion with high HCo3 content
 ⇔ bile, intestinal juice & pancreatic juice ⇒ alkaline or neutral ⇒ neutralise gastric acid
 duodenum = pH 6-7 ⇒ jejunum = neutral
• 1500ml secreted/day
• contents:
 • amylase
 • trypsinogen
 • trypsin inhibitor
 • phospholipase A2
• contents action: trypsinogen ⇒ trypsin ⇒ activate phospholipase A2 ⇒ digestion of proteins

• control of secretion under hormonal control:
 • secretin ⇒
 - ↑ flow of HCO3 rich fluid but low in enzymes & Cl
 - (also ↑ bile secretion)
 • CCK: ↑ enzyme release but ↓ ed volume
 • ACh (vagus): ↑ enzyme release but ↓ ed volume

Intestinal Fluid
• highly viscous fluid which lies on surface of duodenal epithelial cells trapping alkaline fluid ↓ protecting from gastric acid
• jejunum + ileum = isoosmotic NaCl solution
• produced by:
 • duodenum = Brunners glands
 • jejunum & ileum = intestinal crypt cells
• aminopeptidases, amylase, phosphatases for digestion released from intestinal cells

GI Regulators

Gastrin
• see prev under gastric fluid

CCK
• secreted by cells of upper small intestine - I cells
• major actions:
 • stim pancreatic enzyme secretion
 - augments secretin
 • trophic effect on pancreas
 • motility:
 - inhibits gastric emptying
 - ↑ tone pyloric sphincter preventing duodenal reflux into stomach (with secretin)
motility of small intestine & colon
contraction GB
relaxation sphincter Oddi
stim for release:
 - peptides, aa, fats in duodenum
 - ie +ve feedback loop until contents move on
half life = 5mins

Secretin
secreted by S cells in mucosa of upper small intestine
5min half life
actions:
 - ↑watery, HCO3 pancreatic secretion
 - ↓gastric acid secretion via inhibition of Gastrin
 - contraction pyloric sphincter
secretin by:
 - products of digestion
 - acid bathing mucosa op upper small intestine

GIP
made by K cells of mucosa of duodenum & jejunum
↑secretion by:
 - glucose & fat in duodenum
action:
 - inhibit gastric acid & motility (but only in large non physiological doses)
 - ↑insulin secretion (physiological levels)

Motilin
secreted by enterochromaffin cells & Mo cells in stomach, small intestine & colon
action to produce contraction of smooth mm in stomach & intestines
major regulator of migrating motor complexes (MMCs)
control GI motility inbetween meals
erthyromycin binds to motilin receptors
ingestion of food inhibits it
circulating levels ↑ at intervals ~100mins

Somatostatin (GIH)
secreted from
 - D cells in pancreatic islets
 - D cells in GI mucosa
↑secretion by:
 - acid in lumen
action to:
 - inhibit secretion of gastrin, VIP, GIP, secretin, motilin
 - inhibit pancreas exocrine secretion
 - ↓Gi motility
 - ↓absorption of glucose, aa, TGs
Physiology of Swallowing

- afferent limb = pharyngeal receptors ⇒ CN
 - 5 trigeminal
 - 9 glossopharyngeal
 - 10 vagus

- swallowing centre =
 - reticular substance of medulla
 - lower portion of pons

- efferent limb ⇒ pharyngeal musculature via CN
 - 5 trigeminal
 - 7 facial
 - 10 vagal
 - 12 hypoglossal

Phases

- divided into 3 stages:
 - oral
 - pharyngeal
 - oesophageal phases

Oral

- voluntary
- food moves from mouth to pharynx by up & back motion of tongue against hard palate
 - stylopharyngeal mm

- sensory receptors of glossopharyngeal (IX) stimulated ⇒ involuntary coordinated movements of remaining phases

Pharyngeal

- involuntary
- resp inhibited for 1-2 seconds ⇒ food pass into upper oesophagus

- closed areas:
 - nasopharynx by soft palate
 - laryngeal inlet by
 - adduction of vocal cords & aryepiglottic folds
 - epiglottis swings down
 - larynx raised

- food bolus then pushed into oesophagus by pharyngeal contraction & opening of upper oesophageal sphincter (UES)

Oesophageal

- bolus food propelled to stomach by peristaltic contractions
- once in oesophagus:
 - UES contracts
 - oesophageal sphincter relaxes

- primary slow peristaltic waves:
 - pressure 20-60mmHg
 - velocity 2-4cm/s
 - initiated by swallowing centre via vagus nerve
 - gravity promotes movement of fluid > solids

- secondary peristaltic waves:
 - mediated by enteric nervous system of oesophagus
 - stretch receptors in oesophageal wall stim by distension ⇒ activating intrinsic n.s.
Gastric Motility & Emptying

- motility:
 - receptive relaxation of fundus & upper portion of body
 - vagally mediated triggered by oesophagus & pharynx
 - peristalsis begins in lower body ⇒ mixing & grinding
 - controlled by gastric BER
 - stomach contractions (antral systole) occur every 20 seconds lasting up to 10secs
 - facilitate mixing
 - movement of contents fundus ⇒ antrum
 - lower portion body of stomach has stronger waves (50-70cmH20) needed for propulsion

- Control:
 - hormonal:
 - ↑ed emptying:
 - Histamine (H2 receptors) ⇒ ↑cAMP
 - Motilin
 - Ach (M1 receptors)
 - gastrin - receptors on parietal cells
 - ↓ed emptying:
 - PGs - esp PGE - inhibit gastric acid secretion by inhibiting histamine secretion
 - GIP, secretin, CCK + GIH
 - Neural:
 - methods:
 - local autonomic reflexes involving cholinergic neurons
 - vagal induced ↑gastrin/acid secretion/pepsin secretion
 - mechanism of change in emptying rate:
 - neural:
 - osmolality receptors in duodenum:
 - hyperosmolar ⇒ ↓gastric emptying
 - neural & hormonal:
 - fats, CHO, acid in duodenum ⇒ ↓emptying

Transit Time

- liquids ~2hrs
- solids:
 - high calorie slower than low calorie
 - hyperosmolar slower than hypoosmolar (via duodenum sensing)
 - CHO few hours < proteins slower < fats slowest
- gastric emptying delayed by:
 - pain/stress/anxiety
 - drugs eg opioids
 - labour
 - DMs
 - IBD
 - hypothyroid
 - post operative: likely 2nd to ↓CO or redistribution of CO away from viscera
Factors Preventing Reflux of Gastric Contents into oesophagus

Lower Oesophageal Sphincter

- central role
- not an anatomical sphincter
- macroscopically indistinguishable from rest of oesophagus
- = distal 2-5cm oesophagus :
 - ↑ intraluminal pressure ~30cmH20
 - higher no of nerve cells
 - extends below & above diaphragm
 - intrathoracic part exposed to more -ve pressure
- opens reflexly with swallowing (and coordinated with respiration)
- without spincter:
 - intragastric pressure = 5-10 cmH20
 - thoracic oesophageal pressure = -5cmH20
 - passive reflux
- gastric barrier pressure = LESP - IGP

Factors Contributing to prevent reflex

- LES tone
- external mechanical factors
- flap-valve mechanism
- hormonal
- drugs

LES Tone

- ↑ smooth muscle in inner circular layer mm in LES zone due to?:
 - ↑ nerve cells
 - ↑Ca uptake and utilisation
- neural input:
 - vagal mediated = reflex ↑mm tone with ↑intragastric pressure
 - abolished with atropine
 - SNS = ↑tone by α stim or β blockade

External Mechanical Factors - ‘Pinch Cock’

- oesophageal compression by crurae of diaphragm (phreno-oesophageal ligament)
- transmitted abdo pressure compressing oesophagus

Flap Valve Mechanism

- sling fibers of stomach wall create flap valve mechanism
- acute-oesophageal angle
- diaphragmatic crurae contribute to causing pinch-cock

Hormonal

- ↑ LES tone: gastrin, motilin, secretin, CCK, histamine
- ↓ LES tone: progesterone (pregnancy), PGs, VIP, GIP, glucagon

Drugs

- ↑ LES tone: dopamine antagonists, antihistamines, βblockers, α agonists, antacids, NMBs
- ↓ LES tone: atropine, dopamine, IV induction, inhalational, opioids, cricoid pressure (via reflex from pharyngeal receptors)
Physiology of Nausea & Vomiting

Definitions
- Vomiting =
 - Active reflex
 - Usually involuntary
 - Associated with nausea
- Regurgitation = Return of oesophageal contents
- Reflux = Gastric content backflow
 - Both together =
 - Passive pressure effects
 - Need all of:
 - Pressure gradient
 - Channel
 - Content
 - Usually involuntary
- Nausea = Unpleasant experience +/- Associated with vomiting.
 - Symptoms:
 - Salivation
 - Bradycardia
 - Yawning
 - Pallor
 - Sweating
 - As control centres close to each other in brainstem

Vomiting

![Diagram of the factors involved in the control of vomiting, with the probable sites of action of anti-emetic drugs. The cerebellum may function as a second relay or gating mechanism in the link between labyrinth and CTZ (not shown). (CTZ = chemoreceptor trigger zone; H₁ = histamine H₁; M = muscarinic; D₂ = dopamine D₂; 5-HT₃ = 5-hydroxytryptamine₃). (Based partly on a diagram from: Borison et al. 1981)
afferent limb
 › inputs from:
 - CTZ (see below for triggers)
 • located in area postrema in lat walls 4th ventricle ie outside BBB
 • responds via neurotransmitters: ACh, 5HT, Histamine, DA
 - vestibular apparatus/cerebellum ⟹
 • afferent to vomit centre 2 routes:
 › directly
 › via CTZ eg dopamine (CTZ blocker) does not block motion sickness
 - higher centres – pain/smell/sight
 - organs eg
 • heart via vagal
 • testes,
 • GI tract - mucosal irritation/distension via SNS & PNS (vagal) afferents

© generally most common trigger is bowel or brain

induction of vomiting coordinated response from 1+1 areas:
 › vomiting/emetic centre – reticular formation of medulla [MAIN]
 › chemoreceptor trigger zone (CTZ) –
 - very close integration with emetic centre
 - neurotransmitters vital ie ACh, 5HT, Histamine, DA

• efferent to:
 › CN 5, 7, 9, 10, 12 to upper GIT
 › Spinal nerves to diaphragm, abdo muscles

CTZ
• CTZ activated by:
 › CSF & blood borne emetics eg chem. toxins & drugs
 › 5HT neurotransmitter from afferent nerves from stomach & small intestine receives input from vestibular apparatus
 › higher centres – smells, emotions, pain
 › ↑ICP
 › endocrine disturbances
 › radiation & chemotherapy
• CTZ cannot initiate vomiting alone
• CTZ very close physically to resp centre ∴ difficult to full abolish vomit without effecting RR
• vomiting action comes via efferent nerves from emetic centre (not CTZ)

Vomit Reflex

Sensors
• higher centres
• vestibular
• stomach - chemo & stretch receptors
• other organs

Processing
• CTZ
• emetic centre

Efferent
• vagal
• corticospinal tract ⟹ abdominal muscles
Physical Mechanism of Vomiting
- autonomic premonitory symptoms ⟹
- breathing deepens & inspired breath held ⟹
- glottis closed & soft palate elevated to close nares ⟹
 - this vagal protective reflex is lost under GA
- UES & LES tighten ⟹
- abdo mms & diaphragm vagally contract forcefully ⟹ ↑intra-abdo pressure via
 - valsalva effect
 - compressing stomach between abdo wall & diaphragm
- UES & LES suddenly relax ⟹ gastric contents forcefully expelled up & out
 - hyoid bone & larynx raised ⟹ pulls cricooesophageal sphincter open

Consequences of Vomiting
- wound dehiscence
- intraocular bleeding
- anorexia
- aspiration
- dehydration
- alkalaemia
- hypokalaemia
- raised ICP = valsalva
- acidosis - only if prolonged ⟹ shock
- Mendelson’s syndrome =
 - chemical pneumonitis post aspiration during GA
 - hypoxia 2-5hrs after aspiration ⟹ APO
 - risk higher if pH <2.5 & aspirated contents >25mls

Risk of Vomiting in Pregnancy
- enlarged uterus ⟹ ↑intra-abdo pressure (further worsened by lithotomy position)
- ↑gastrin levels ⟹ ↑acidity and ↑volume of gastric contents
 - but also ↑tone LES, and ↓pyloric tone
- ↓motilin levels ⟹ ↓speed gastric emptying & ↓LES tone
- general ↓gastric emptying:
 - narcotics/sedatives
 - pain
- progesterone ⟹ ↓LES tone

Clinical Use of Anti Emetics Using Pathways
- H1 receptor antagonists: ⟹ motion sickness, PONV
 - cyclizine
 - promethazine
- D2 receptor antagonists: ⟹ GIT, cytotoxics, radiation, uraemia
 - metoclopramide
 - phenothiazines eg prochlorperazine
- muscarine receptor antagonists ⟹ motion sickness
 - hyoscine
- 5-Hydroxytryptamine (5-HT3) receptor antagonists ⟹ PONV, cytotoxics, radiation
 - serotonin
- cannabinoids ⇒ cytotoxics
 - nabilone