General Physiology

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Membrane</td>
<td>2</td>
</tr>
<tr>
<td>Lipid Bilayer</td>
<td>2</td>
</tr>
<tr>
<td>Function of CM Proteins</td>
<td>2</td>
</tr>
<tr>
<td>Underlying CM</td>
<td>2</td>
</tr>
<tr>
<td>Intercellular Connections</td>
<td>3</td>
</tr>
<tr>
<td>Adhesive type Connections</td>
<td>3</td>
</tr>
<tr>
<td>Transfer Type Connections</td>
<td>3</td>
</tr>
<tr>
<td>Transport Across Cell Membranes</td>
<td>4</td>
</tr>
<tr>
<td>Exocytosis/Endocytosis</td>
<td>4</td>
</tr>
<tr>
<td>Diffusion</td>
<td>5</td>
</tr>
<tr>
<td>Osmosis</td>
<td>5</td>
</tr>
<tr>
<td>Gibbs-Donnan Effect</td>
<td>6</td>
</tr>
<tr>
<td>Ion Channels</td>
<td>6</td>
</tr>
<tr>
<td>Na/K/ATPase</td>
<td>7</td>
</tr>
<tr>
<td>Secondary Active Transport</td>
<td>7</td>
</tr>
<tr>
<td>Organelles</td>
<td>7</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>7</td>
</tr>
<tr>
<td>Endoplasmic Reticulum</td>
<td>10</td>
</tr>
<tr>
<td>Ribosomes</td>
<td>11</td>
</tr>
<tr>
<td>Cell Receptors & Secondary Messengers within Cells</td>
<td>11</td>
</tr>
<tr>
<td>Type 1 - Ionotropic</td>
<td>12</td>
</tr>
<tr>
<td>Type 2: G Proteins & P Protein Coupled Receptors (GPCRs)</td>
<td>12</td>
</tr>
<tr>
<td>Type 3 - Kinase linked</td>
<td>13</td>
</tr>
<tr>
<td>Type 4 - Nuclear Receptors</td>
<td>14</td>
</tr>
<tr>
<td>Intracellular Calcium as a 2nd Messenger</td>
<td>14</td>
</tr>
<tr>
<td>General Principles</td>
<td>15</td>
</tr>
<tr>
<td>Definitions</td>
<td>15</td>
</tr>
<tr>
<td>Intracellular Fluid (ICF) & Extracellular (ECF)</td>
<td>15</td>
</tr>
<tr>
<td>Control of Cell Volume</td>
<td>16</td>
</tr>
<tr>
<td>Changes to Tonicity</td>
<td>16</td>
</tr>
<tr>
<td>Mole</td>
<td>16</td>
</tr>
<tr>
<td>Water</td>
<td>17</td>
</tr>
<tr>
<td>Electrolytes</td>
<td>17</td>
</tr>
<tr>
<td>pH & Buffering</td>
<td>17</td>
</tr>
<tr>
<td>Tonicity</td>
<td>17</td>
</tr>
<tr>
<td>Non ionic Diffusion</td>
<td>17</td>
</tr>
<tr>
<td>TransMembrane Potential</td>
<td>18</td>
</tr>
<tr>
<td>Concentration of Ions</td>
<td>18</td>
</tr>
<tr>
<td>Genesis of Membrane Potential</td>
<td>18</td>
</tr>
<tr>
<td>Resting Membrane Potentials</td>
<td>18</td>
</tr>
<tr>
<td>Energy Production</td>
<td>19</td>
</tr>
<tr>
<td>Oxidation</td>
<td>19</td>
</tr>
</tbody>
</table>
Cell Membrane

- Made of
 - Phospholipids
 - Proteins
 - Cholesterol - Found in eukaryocytes i.e., cells with nuclei
- Cell membrane = 7.5 nm thick semi-permeable structure

Lipid Bilayer

- Fluid rather than solid
- Phospholipids have:
 - eg. phosphatidylcholine & phosphatidylethanolamine
 - Hydrophilic head
 - Water soluble
 - Exposed to aqueous exterior & interior
 - Glycerol backbone
 - Fatty acid tails
 - Hydrophobic
 - Meet in middle of cell membrane
- Proteins can be either:
 - Integral – i.e., pass through bilayer eg ion channels
 - Peripheral = straddling
 - Make up 50% of cell membranes mass

Function of CM Proteins

1. Structural
2. Carriers for facilitated diffusion (i.e., down electrochemical gradient)
3. Pumps for ion active transport
4. Ion channels (diffusion down electro- or chemical gradient or both; eg K-“leak” channels)
5. Receptors for chemical messengers (i.e., hormones, neurotransmitters, autacoids…)
6. Enzymes
7. Glycoproteins involved in AB processing or anticoagulation (e.g., the mucopolysaccharide glycocalyx of the endothelium which repels clotting factors + PLT’s → helps prevent blood from clotting in intact blood vessels)

Underlying CM

- Basement membrane or basal lamina
- Made up of:
- Collagens
- Laminins
- Fibronectins
- Proteoglycans

- Function to bind cells & regulate development & growth

Intercellular Connections

- 2 main types:
 - adhesive type connections
 - transfer type connections

Adhesive type Connections

- tight junctions:
 - aka zona occludens
 - attachments between cell membrane at apical margins
 - differ in leakiness:
 - tight = impermeable eg distal renal tubule for water, BBB, bladder
 - leaky = paracellular permeable eg prox renal tubule, small intestine, liver
 - help maintain cell polarity & prevent movement of proteins in plane of CM (is a protein inserted into apical CM will stay there)

- zonula adherens:
 - lies below tight junction ie almost a continuous structure
 - contains cadherins
 - acts as site for attachments of cellular microfilaments

- desmosomes:
 - patches of apposed thickenings of membranes of adjacent cells

- hemidesmosomes:
 - attach cells to underlying basal lamina
 - attached intracellular to filaments
 - contain integrins (not cadherins)

- focal adhesions:
 - also attach to basal laminae
 - labile
 - associated with actin filaments inside cell
 - have role in cell movement

Transfer Type Connections

- GAP junctions:
 - Six subunit protein connections
 - Between cells which are apposed
 - Form low electrical resistance channels
 - Permit intercellular communication (eg current flow & electrical coupling between myocardial cells via ions, aa, sugars)
 - @GAP junction Intercellular space narrows from 25 ⇒ 3nm
 - diameter of junctions regulated by:
 - pH
 - voltage
 - Intracellular calcium
Transport Across Cell Membranes

- Water, ions, substances can cross cell membrane by:
 - Bulk flow:
 - Aka ultrafiltration
 - Eg fluid movement between capillaries & interstitium 2nd to Starlings forces
 - If bulk flow of solvent then also drags some solute
 \[\leftrightarrow = \text{solute drag} \]
 - Exocytosis & endocytosis
 - Diffusion:
 - Down gradients through:
 - Directly through membrane
 - Through protein channels:
 - Voltage
 - Ligand gated
 - Carrier mediated diffusion
 - Where protein binds & carries
 - Facilitated diffusion = when item moved along their gradient (chem or electrical) no energy is needed eg GLUT transporters
 - Active transport
 - Primary –
 - Hydrolysis of ATP
 - Uniports = transport 1 substance
 - Symports = need to bind more than 1 substance for movement to occur
 - Antiports = exchange one for another
 - Secondary active
 - Counter-transport

Exocytosis/Endocytosis

Exocytosis
- Vesicle containing material sent to cell membrane
- Fusion with CM
- Ca dependant exocytosis
- 2 pathways:
 - Nonconstitutive pathway =
 - Aka regulated pathway
 - Protein from Golgi enter secretory granules
 - Process of prohormones to hormones occurs before exocytosis
 - Constitutive pathway =
 - Prompt transport of proteins to cell membrane in vesicles with no processing

Endocytosis
- Reverse of exocytosis
- Different methods:
 - Phagocytosis =
 - Cell eating
 - Material makes contact with CM which then invaginated
 - Invagination pinched off \(\Rightarrow \) engulfed material in vacuole with intact CM
 - Pinocytosis =
 - Cell drinking
 - Vesicles much smaller
 - Substance ingested in solution
 - Clathrin mediated endocytosis =
- where protein clathrin accumulates in CM
- clathrin forms a geometric array that surrounds endocytotic vesicle
- GTP binding protein dynamin involved at neck
- When vesicle formed clathrin falls off & is recycled
- Responsible for internalisation of many receptors & ligands bound to them eg LDL, nerve growth factor
 - Caveolae =
 - Areas rich in cholesterol & sphingolipids
 - Caveolin found in CM (similar to clathrin)
 - Dynamin also involved
 - Nonclathrin/noncaveolar endocytosis

Diffusion
- Usually down chemical =/- electrical gradient ie no energy needed
- Summarized by Fick’s equation

\[
J = -D \cdot A \cdot \frac{(\Delta c)}{x}
\]

\(J\) = net rate of diffusion
\(D\) = diff coefficient and is \(- \text{sol} / \sqrt{\text{mw}}\) (Graham’s Law)
\(A\) = area
\(c\) = concentration
\(x\) = thickness of membrane

Osmosis
- = diffusion of solvent molecules into a region with higher conc of a solute to which the membrane is impermeable
- osmotic pressure = pressure necessary to prevent solvent migration into its compartment
- osmotic pressure =

\[
p = \frac{n \cdot R \cdot T}{V}
\]

\(p\) = osmotic pressure
\(n\) = number of particles
\(R\) = gas constant
\(T\) = temp
\(V\) = volume

\(\therefore\) if \(T\) held constant: \(p \propto\) number of particles/unit of volume

Gibbs-Donnan Effect
- definition:
 - semipermeable membrane separates 2 solutions
 - 1 solution contains non diffusible charged species
 - THEN the distribution of all other diffusible univalent cations & anions across the membrane is altered in predictable manner ie at equilibrium the conc ratios are equal
- More complex for divalent ions due to protein binding
- NET effect:
 - On side of non-diffusible ion = more ions
 - \(\therefore\) if situation is intracellular \(\Rightarrow\) osmotic movement of water into cell \(\Rightarrow\) cell rupture
 - \(\therefore\) eg -ve change intracellular protein
 - this process opposed by Na/K/ATPase

importance of Gibbs-Donnan effect
- maintain & stabilise cell volume:
 - balance of:
• intracellular: non diffusible proteins & inorganic phosphates
• ECF: non diffusible Na – due to Na/K/ATPase pumping it out & low membrane permeability
 o = Double Donnan effect
 o if Na/k/ATPase stops working ⇒ influx of Na & water ⇒ cell rupture
• contribution to plasma oncotic pressure:
 o equilibrium ⇒ alteration distribution of other ions across CM
 o ⇒ small NET ↑ in ions in plasma
 o ⇒ ↑↑plasma oncotic pressure in capillary blood ie 15 to 25mmHg
• contributes to resting membrane potential:
 o small effect
 o small amount of:
 • intracell: ↑cations
 • ECF: ↑anions

Ion Channels
• Channels exist
 o specific for K+, Na+, Ca+, Cl-
 o non specific cations & anions

Na/K/ATPase
• Na-K Pump
 • enzyme which catalyses the hydrolyses of ATP ⇒ ADP
 • heterodimer made of:
 o α subunit =
 • MW ~ 100K
 • Transport of Na/K
• Spans cell membrane x10
• Amino-carboxyl terminals intracellular
 o β subunit =
 • MW ~55K
 • Glycoprotein
• Movement of Na & K major energy process of body:
 o Cells – 24% energy used
 o Neurons – 70% energy used
• both subunits extend thru CM
• separation of subunits kills pump
• when Na binds to α subunit ⇒ ATP also binds and converted to ADP
• energy used to extrude 3 Na, and move 2 K into cell or each ATP
• actively inhibited by ouabain
 ℭ related to digitalis glycosides
• found in all parts of body

Functions
• functions include:
 o genesis & maintainence of RMP
 o stability of cell volume
 o transport of substances across membranes (primary & secondary active)
 o hydrogen in secretion in kindey
 o signal transduction

Regulation
• ↑intracellular Na
• 2nd messengers produced in cells eg cAMP, DAG, arachidonic acid derivates
• thyroid hormones ⇒ ↑activity & ↑number of Na/K pumps
• aldosterone ⇒ ↑number of pumps
• dopamine – inhibits pump in kidneys ⇒ natriresis
• insulin ⇒ ↑activity

Secondary Active Transport
• = active transport of Na coupled to transport of other substances
• eg Na/K/ATPase creates an elec-chem gradient by pumping Na out of cells into ECF:
 o eg mucosal cells of small intestine: symport which transports glucose only if Na also attached
 and moves at same time
 o myocardium- NCX pump

Organelles

Mitochondria
• mitochondria have own genome & ability to manufacture own RNA & proteins
• their ribosomes = 70S type (30S & 50S) ie same as bacteria
 ℭ rest of cell has 80S ribosomes
Structure
• 1-10um
• outer membrane:
 o encloses whole organelle
 o contains several integral proteins = porins
 o porins form large aqueous channels which allow passage of movement of molecules up to 5000D
• intermembrane space:
 o between outer & inner membrane
 o chemically equivalent to cells cytosol
 o contains cytochrome-c
• inner membrane:
 o no porins
 o controlled permeability via transporter proteins
 o proteins have diff functions:
 ▪ proteins carrying out oxidative reactions of resp chain
 ▪ ATP synthase – makes ATP in matrix
 ▪ Transport proteins
 ▪ Protein import machinery
• Cristae:
 o Formed by folded inner membrane
 o Vastly ↑s surface area for ATP production
 o Cells which more active eg mm have more cristae
• Matrix:
 o Space enclosed by inner membrane
 o Impt in ATP production
 o Contains highly conc mixture of
 ▪ hundreds of enzymes
 ▪ mitochon ribosomes (70S)
 ▪ tRNA
 ▪ several copies of DNA genome
 o major function of enzymes =
 ▪ oxidation of pyruvate & Fas
 ▪ citric acid cycle

Function
• main = ATP production which needed for cellular metabolism
• other functions:
 o cell signalling
 o apoptosis
- cellular differentiation
- cell growth

Oxidative Phosphorylation - Mitochondria Energy Production
- Mitochondria found in high concentration in cells with high metabolic demands, e.g., myocardium (23% of cells), brown fat (neonate)
- Exercise ↑s numbers
- OP = production of ATP associated with oxidation by the flavoprotein cytochrome system in mitochondria

ATP formed in electron transfer chain:
- Substrate diffuses into mitochondria cytoplasm
- Hydrogen removed by a dehydrogenase
- NAD carries hydrogen to respiratory chain
- Hydrogen ionises and protons pass along series of carrier molecules across an insulating membrane (inner membrane of mitochondria – forms cristae)
- Movement of protons creates an electrochemical gradient for transport of protons from intermediate space back into matrix ⇒ this drives a reversible ATPase in the inner membrane (ATP synthase)
- ATP synthase: ADP + Pi → ATP
- O2 required to oxidise NADH

Reduction of O2 to water – catalysed by cytochrome oxidase

cyanide inhibits this oxidase ∴ inhibits OP in mitochondria
• Eg’s of carrier molecules in electron transfer chain
 o Flavoprotein
 o Cytochromes A, A3, B, C, C1
 o Ubiquinone
 o Several iron sulphide proteins

• OP depends on:
 o Adequate supply of ADP +ve feedback loop eg ↑ATP utilisation ⇒ ↑ADP ⇒ ↑OP
 o Rate of delivery of fats, lactate, glucose to interior of mitochon
 o Availability of O2:
 ▪ Pasteur point = 1-2mmHg ie point below OP cannot occur
• ∴ cardioresp works in harmony to ensure O2 reaches cells
 o defined by oxygen flux equation:
 \[\text{DO}_{2\text{body}} = \text{CaO}_2 \times \text{CO} \]

• lack of oxygen causes:
 o nothing to scavenge H+ at end of transfer chain
 o transfer chain ceases
 o build up of reduced compounds ⇒ inhibits TCA cycle ⇒ inhibition of glycolysis
 \[\rightarrow \text{but glycolysis continues as lactate dehydrogenase removes reduced compounds} \]

Endoplasmic Reticulum
• complex system of tubules in cytoplasm
• tubule walls made of membrane
• rough ER =
 o ribosomes (granules) attaches to cytoplasmic side of membrane
 o involved in protein synthesis:
 ▪ folding polypeptide chains
 ▪ form S-S bonds
• smooth ER =
 o attached ribosome absent (but free ribosomes in cytoplasm)
 o function:
 ▪ site of steroid synthesis
 ▪ detoxification processes
• sarcoplasmic reticulum = imp't role in skeletal & cardiac mm functioning

Ribosomes
• eukaryotes =
 o 80S – 60S & 40S subunits
 o 22-32nm
 o site of protein synthesis
 o contain
 ▪ many proteins &
 ▪ at least 3 ribosomal RNAs
 o ribosomes attached to ER synthesize proteins for eg
 ▪ hormones for secretion
 ▪ proteins seregated in lysosomes
 ▪ proteins in cell membranes
 o free ribosomes in cytoplasm:
 ▪ protein in Hb
 ▪ protein in mitochondira
• Golgi apparatus involved in processing proteins found in ribosomes

Cell Receptors & Secondary Messengers within Cells
• Extra-cellular ligands = 1st messangers
• Intracellular mediators = 2nd messangers

Types of receptors:

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Type2</th>
<th>Type3</th>
<th>Type4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand-gated ion ch’s</td>
<td>G-prot coupled</td>
<td>Kinase-linked</td>
<td>Nuclear</td>
</tr>
<tr>
<td>ionotropic</td>
<td>metabotropic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Effector</th>
<th>2nd msgr</th>
<th>Coupling</th>
<th>E.g.’s</th>
<th>Time</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>membrane</td>
<td>ion channel</td>
<td>c-AMP/c-GMP</td>
<td>G-prot</td>
<td>n-AchR</td>
<td>millisec’s</td>
<td>oligomeric assembly of subunits around central pore</td>
</tr>
<tr>
<td>membrane</td>
<td>Ch or enzyme</td>
<td>IP3 / DAG</td>
<td>direct</td>
<td>m-AchR</td>
<td>seconds</td>
<td>Monomer with 7 transmembrane helices</td>
</tr>
<tr>
<td>membrane</td>
<td>enzyme</td>
<td>--</td>
<td>via DNA</td>
<td>Insulin</td>
<td>hrs</td>
<td>Single trans-membr helix linking EC R domain to IC kinase domain</td>
</tr>
<tr>
<td>intracellular</td>
<td>gene transcription</td>
<td>--</td>
<td></td>
<td>steroid, thyroid H receptors</td>
<td>hrs</td>
<td>Monomeric str with separate R and DNA binding domains.</td>
</tr>
</tbody>
</table>

General Principles - 11
Type 1 - Ionotropic

- See prev notes on NaKATPase & ion channels

Type 2: G Proteins & P Protein Coupled Receptors (GPCRs)

- **GPCR** = monomer compromising 7 membrane spanning segments
- One of intracellular loops = larger & interacts with G protein
- ∴ GPCR couple to intracellular effector systems via a GP
 \[\text{GPCR} \rightarrow \text{G Protein 100: 1 GPCR} \text{ (amplification system)}\]
- G proteins =
 - membrane proteins coupled to specific receptors
 \(\text{GPCR} \rightarrow \text{G Protein} \)
 - non selective workhorses for GPCR they are coupled to.
 \(\text{GPCR} \rightarrow \text{G Protein} \)
- G proteins =
 - Alpha –
 - bound to GDP
 - possesses intrinsic GTPase activity
 - Beta
 - Gamma
- **Process of activation:**
 - Ligand bind to GPCR \(\Rightarrow\) GDP on alpha subunit is exchanged for GTP
 - Alpha subunit separates from combined Beta & gamma subunit
 \(\text{GPCR} \rightarrow \text{G Protein} \)
 - Alpha-GTP complex free to activate an effector eg membrane enzyme or channel
- **Activation terminated**
 - when bound GTP hydrolysed to GDP
 \(\text{GPCR} \rightarrow \text{G Protein} \)
 - intrinsic GTPase ability of alpha subunit is upregulated when bound to target protein
 - alpha (& bound GDP) then reattach with beta-gamma subunits
- 1400 combinations of alpha, beta, gamma combinations to control different effectors
- complex activation process \(\Rightarrow\) slower onset than ionotropic receptors eg GABA, n-ACH = milliseconds

Targets of GPs

G protein can activate:
- adenylate cyclase (AC) or Guanylate cyclase (GC) \(\Rightarrow\) c-AMP or c-GMP formation
- phospholipase C (PLC) on inner surface of CM

c-AMP
- cyclic adenosine 3’5’monophosphate
- cAMP = physiologically active
- c-AMP formed from ATP by adenylyl cyclase
- inactivated by conversion to 5’AMP by phosphodiesterase
 \(\text{cAMP} \rightarrow \text{cAMP} \rightarrow \text{5’AMP} \rightarrow \text{5’AMP} \)
- can be inhibited by methylxantines eg theophylline

c-GMP
- cyclic guanosine monophosphate
- impt in vision
- guanylate cyclases = family of enzymes which catalyse formation of cGMP

PLC
- catalyse hydrolysis of membrane lipid PIP2 to
- inositol phosphate (IP3) or
diacylglycerol (DAG)

- IP3 – diffuses to ER where binds to IP3 receptor
 \(\Leftarrow \) ligand gated Ca channel
- DAG – stays in cell membrane where it activates protein kinase C

Types of G Proteins

- **Gs**: \(\rightarrow \) \(\uparrow \) AC(or GC) \(\rightarrow \) \(\uparrow \) c-AMP
 eg of substances causing Gs activation:
 - ADH ,
 - adrenalin(beta receptors) ,
 - adenosine (A2) ,
 - ANP ,
 - glucagon ,
 - histamine(H2)

- **Gi**: \(\rightarrow \) \(\downarrow \) AC (or GC)\(\rightarrow \) \(\downarrow \) c-AMP
 - angiotensin (AT2) ,
 - adenosine (A1),
 - alpha-2 and
 - opioid receptors.

- **Gq**: \(\rightarrow \) \(\uparrow \) PLC \(\rightarrow \) IP3 + DAG
 eg noradrenaline (alpha1) , histamine H1 ,

- **Gt**: \(\rightarrow \) stim c-GMP phosphodiesterase in photoreceptors

- **Go**: \(\rightarrow \) involved in gating of ion ch’s , \(\uparrow \) concentration in brain

Type 3 – Kinase linked

- Eg
 - insulin like growth factor 1 (IGF-1)
 - Epigermal growth factor (EGF)
- Single membrane spanning domain
- Intracellular tyrosine kinase domains
- Ligand binds to tyrosine kinase receptor\(\Rightarrow \)
 - Dimerization of 2 similar receptors
 - \(\Rightarrow \) partial activation of intracellular tyrosine kinase domains
Type 4 – Nuclear Receptors

Intracellular Calcium as a 2nd Messenger

- Free Ca2+ conc in cytoplasm = rest 100nmol/L
- Ca conc in ECF = 1,200,000 nmol/L
 \(\Rightarrow \) ie marked inwards conc gradient
- \(\therefore \) most of intracellular Ca stored at v high conc in ER & other organelles
- Ca can enter cell by variety of methods:
 - Down gradient
 - Ligand gated or voltage gated channels
 - Stretch channels
- Secondary messengers \(\Rightarrow \) ↑intracell Ca conc by:
 - Ca release from intracellular stores
 - IP3 –
 - major 2nd messenger with this effect
 - IP3 receptor on ER
 - ↑ed entry Ca into cells
 - SOCCs (store-operated Ca channels)
 - Transient release Ca from internal stores \(\Rightarrow \) opening SOCC on cell membrane
 - Influx of Ca replenishes & refills ER
- Movement of Ca out of cell against conc gradient:
 - Active transport – membrane Ca ATPase
 - 2nd Active transport –
 - NCX (3 Na in for each Ca out)
 - Driven by Na gradient
- Movement of Ca into internal stores via action SERCA pump (sarcoplasmic or endoplasmic reticulum Ca ATPase)
General Principles

Definitions

- **Osmolarity**: = no of osmoles of solute per litre of solvent:
 - altered by temp changes + vol of solute
- **Osmolality**: = no of osmoles of solute per kg of solvent:
 - independent of T changes or vol of solute
- **Tonicity**:
 - = the effective osmolality of a solution.
 - = to the sum of the []’s of the solutes which have the capacity to exert osmotic force across the membrane concerned.

Intracellular Fluid (ICF) & Extracellular (ECF)

- ICF cannot be measure directly
- Derived from TBW – ECF
- TBW measured by dilution principle using Deuterium oxide (D20 = a heavy water)
- ECF measured with inulin
- TB Water = 60% of total body weight
- body water can be further subdivided via simple or complex models:
 - complex (60% broken down into)
 - ICF = 55%
 - ECF = 45% which broken down into
 - 20% interstitial
 - 7.5% intravascular
 - 7.5% bone
 - 7.5% dense CT
 - 2.5% transcellular fluid eg CSF, urine in bladder etc
 - simple (% = breakdown of 60%) (bracketed = fraction of 60%)
 - 40% ICF (2/3)
 - 20% ECF (1/3)
 - 5% plasma (1/4)
 - 15% interstitial (3/4)
- ∴ 70kg person:
 - TBW = 42litres
 - ICF = 28litres
 - ECF = 14 litres:
 - 3.5 litres plasma
 - 10.5 litres interstitial fluid
Other Body Weights
- weights:
 - 60% fluid
 - intracellular - 40%
 - extracellular - 20%
 - 17% protein
 - 15% fat
 - 7% mineral

Control of Cell Volume
- H20 can cross CMs freely ∴ could lead to:
 - Change ECF tonicity
 - Change in cell volume
 - but doesn’t
- Cell contain sig conc of anions which non-diffusable
 - proteins & organic phosphates
- Creates Donnan effect across CM ⇒ intracellular anions drawing water into cell ⇒ cell rupture if nt counterbalanced!
- Counterbalance =
 - Donnan effect in opposite direction set up by Na in ECF
 - Na in ECF effectively non diffusible due to Na/K/ATPase pump & ↓ed Na CM permeability
 - double Donnan effect ⇒ stable cell volume
 - reliant on Na/K/ATPase

Changes to Tonicity
- Acute change in ECF tonicity ⇒ acute change in cell volume
- Adaptation can occur with time:
 - Cell adapt to minimise disruption caused by change in ECF tonicity
 - Done by changing intracellular solute content
 - ie lose or gain solute to minimise volume changes
- Eg ECF hypertonicity:
 - ⇒ IC dehydration
 - cell will gain solute from ECF or ↑production of own solute

Mole
- = gram molecular weight of a substance
- 1mol NaCl = 23g + 35.5g = 58.5g
Water

- H₂O has a dipole moment:
 - O₂ pulls away electrons from the hydrogen atoms \(\Rightarrow \) slightly polar
 - allows water to dissolve variety of charged atom & molecules
 - allows H₂O – H₂O bonding via Hydrogen bonds

- hydrogen bond network causes:
 - high surface tension
 - high heat vaporisation & heat capacity
 - high dielectric constant

Electrolytes

- eg NaCl = molecules which dissociate in water to:
 - Na⁺ = cation
 - Cl⁻ = anion

- Tend not to reassociate in water due to elec charge

pH & Buffering

- pH = logarithm to the base 10 of the reciprocal of the H⁺ concentration
 \(\text{pH} = -\log \text{H⁺ conc} \)

- water = pH 7
- gastric acid = 2
- pancreatic enzyme = 8

- buffer = substance which has ability to bind or release H⁺ in solution thus normalising pH of solution

- isohydric principle = all buffer pairs in homogenous solution are in equilibrium with same H⁺ conc

Tonicity

- = osmolality of a solution relative to plasma
- solution which same osmolality as plasma = isotonic
- hypertonic = greater osmolality than plasma

- all solutions which initially isosmotic with plasma would remain isotonic but solutes diffuse into cells/metabolised \(\text{ie same osmotic pressure or freezing point depression} \)
 - 0.9% saline = remains isotonic – as net movement of osmotically active particles
 - 5% gluc =
 - isotonic initially
 - gluc then metabolised \(\Rightarrow \) hypotonic solution

- Na⁺, Cl⁻ & HCO₃⁻ provide most impt contribution to osmolal conc of plasma (270 of the 290mOsm/L)

Non ionic Diffusion

- Some acids/bases can cross membrane in undissociated form and not in ionic form
- \(\therefore \) move across as undisassociates and then dissociate
- = non ionic diffusion
TransMembrane Potential

Concentration of Ions

- resting cell membrane potential = -70mV

<table>
<thead>
<tr>
<th>Ion</th>
<th>Inside Cell</th>
<th>Outside Cell</th>
<th>Equilibrium Potential mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>15</td>
<td>150</td>
<td>+60</td>
</tr>
<tr>
<td>K+</td>
<td>150</td>
<td>5.5</td>
<td>-90</td>
</tr>
<tr>
<td>Cl-</td>
<td>9</td>
<td>125</td>
<td>-70</td>
</tr>
<tr>
<td>Ca</td>
<td>100 nanomol</td>
<td>2.2-2.5 (1.15-1.3)</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>10 mmol</td>
<td>0.75-1 mmol</td>
<td></td>
</tr>
<tr>
<td>HCO3</td>
<td>10</td>
<td>20-30</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.1</td>
<td>7.4</td>
<td></td>
</tr>
</tbody>
</table>

- Na:
 - Concentration & elec gradient is inward
 - ∴ expect slow gain of intracellular Na

- K:
 - Conc gradient outward
 - Elec gradient inward
 - But conc gradient is greater ∴ expect slow outward movement

- Cl-:
 - Conc gradient inward
 - Elec gradient neutral

Genesis of Membrane Potential

- Na,K, ATPase:
 - Uses ATP to pump K back into cell
 - Keeps intracellular Na low
 - 3Na out; 2 K in ⇒ .: contributes to membrane potential
 \[\text{electrogenic pump}\]

Resting Membrane Potentials

- skeletal mm -90mV; threshold -70mV
- cardiac mm -80mV; threshold -65mV
- Neurones -70mV; threshold -55mV
- Cardiac pacemaker cells -60mV
- smooth mm – wandering baseline but average -50mV
Energy Production

- large amounts of energy released when high energy phosphate compound bonds are hydrolysed
- also see low energy phosphates
- ATP = most impt high energy phosphate:
 - ATP ⇔ ADP ⇔ AMP
 - all steps create energy

Oxidation

- Oxidation =
 - combination of a substance with O2 or
 - loss of a hydrogen or
 - loss of electrons
 - opposite = reduction
- reduction reactions:
 - NAD+ ⇔ NADP+ ⇔ NADH ⇔ NADPH
- Oxidative phosphorylation:
 - Energy from a proton gradient across mitochondrial membrane
 - Flavoprotein-cytochrome systems creates H+ movement from inner to outer lamella of mitochondria
 - Return movement of proton down proton gradient ⇔ ATP
- 90% O2 consumption in basal state = mitochondrial
 - 80% this coupled to ATP synthesis