9. Control of Ventilation

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resp Control System</td>
<td>2</td>
</tr>
<tr>
<td>Elements</td>
<td>2</td>
</tr>
<tr>
<td>Central Controller</td>
<td>2</td>
</tr>
<tr>
<td>Brainstem</td>
<td>2</td>
</tr>
<tr>
<td>Medulla resp centre</td>
<td>2</td>
</tr>
<tr>
<td>Apneustic Centre</td>
<td>3</td>
</tr>
<tr>
<td>Pneumotaxic Centre</td>
<td>3</td>
</tr>
<tr>
<td>Cortex</td>
<td>3</td>
</tr>
<tr>
<td>Other Brain</td>
<td>3</td>
</tr>
<tr>
<td>Effectors</td>
<td>3</td>
</tr>
<tr>
<td>Sensors</td>
<td>3</td>
</tr>
<tr>
<td>Central Chemoreceptors</td>
<td>3</td>
</tr>
<tr>
<td>Peripheral Chemoreceptors</td>
<td>4</td>
</tr>
<tr>
<td>Lung Receptors</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary Stretch Receptors</td>
<td>6</td>
</tr>
<tr>
<td>J Receptors</td>
<td>6</td>
</tr>
<tr>
<td>Bronchial C fibers</td>
<td>6</td>
</tr>
<tr>
<td>Other Receptors</td>
<td>6</td>
</tr>
<tr>
<td>Lung Reflexes</td>
<td>7</td>
</tr>
<tr>
<td>Reflexes in URT</td>
<td>7</td>
</tr>
<tr>
<td>Other Inputs</td>
<td>8</td>
</tr>
<tr>
<td>Integrated Response</td>
<td>8</td>
</tr>
<tr>
<td>Response to CO2</td>
<td>8</td>
</tr>
<tr>
<td>Response to Oxygen</td>
<td>9</td>
</tr>
<tr>
<td>Response to pH</td>
<td>9</td>
</tr>
<tr>
<td>Response to Exercise</td>
<td>9</td>
</tr>
<tr>
<td>Abnormal Patterns of Breathing</td>
<td>9</td>
</tr>
<tr>
<td>Physiology of Breath Holding</td>
<td>10</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
</tbody>
</table>
Resp Control System

Elements
• Sensors - chemoreceptors
• Afferent limb - nerves
• Central – pons & medulla
• Effectors – resp mms

Central Controller
• Basal rate from brainstem
• Cortex can override

Brainstem
• Resp centres = Pons & medulla
• Receive input from
 o chemoreceptors
 o lungs
 o cortex
• major output to phrenic nerves
• pattern of insp & expiration:
 o complex interaction between spont pacemaker activity of medullary neurons
 o input/modulation of afferent inputs
 o can be very complex
• 3 main groups:
 Medulla resp centre
 o in reticular formation of medulla beneath floor of 4th vent
 o DIVE:
 ▪ Dorsal = inspiratory
 ▪ Ventral = expiratory
 o dorsal resp group – inspiration
 ▪ intrinsic periodic firing ⇒ insp
 ▪ latency
 ▪ building frequency of APs ⇒ crescendo over seconds
 ↑this builds insp mm activity in ramp fashion
 ▪ then fall to preinsp tone
 o within group have cells classified according to when active during inspiration:
 ▪ early insp
 ▪ insp ramp
 ▪ late onset insp neurons
 ▪ controls on group:
 ▪ insp ramp can be inhibiting (shortened) by impulses from pneumotaxic centre ⇒ ↑RR
 ▪ vagal & glossopharyngeal nerves
 o ventral resp group – expiration
 ▪ not active during quiet breathing as exp is passive
 ▪ cell classifications:
 ▪ early exp
 ▪ early peak whole expiratory
 ▪ exp ramp neurons
 ▪ activity in the medullary centre occurs in 3 phases:
 o insp phase:
 ▪ distinct start
 ▪ gradual incr in insp nerve & mm activity ie ramping
 ▪ activation of pharyngeal dilatory muscles
Control of Ventilation

- **exp phase 1:** ↓ in insp motor d/c ⇒ ↓ ing tone of insp mms
- **exp phase 2:**
 - insp nerves & mm inactive
 - ventral group & exp mms inactive during quiet breathing
 - progressively recruited with ↑ ing vent/forced expiration

Apneustic Centre
- in lower pons
- impulses from here have +ve effect on insp area of medulla ⇒ ↑ ramping of insp APs ⇒ ↓RR

Pneumotaxic Centre
- upper pons
- -ve input to medulla insp centre ⇒ ↓ ramping ⇒ ↑RR
- also regulates insp volume
- fine tunes medulla insp centre

Cortex
- can override function of brainstem within limits
- volunt hypervent ⇒ half ↓PCO2 ⇒ resp alkalosis ⇒ mm tetany ⇒ caropedal spasm
- volunt hypovent: limited by factors incl PO2 & PCO2

Other Brain
- limbic system & hypothalamus – rage & fear ⇒ breathing change

Effectors
- resp motor neurons (UMNs) in brainstem
- 2 separate areas which correspond to insp & exp mm activity
- complex central integration of resp control seen in medullary centre also seen in ant horn cell (UMN > LMN synapse)
- 3 groups of UMN synapse into ant horn cell:
 - 1st = from medullary centre (dorsal & ventral) – insp & exp control
 - 2nd = concerned with voluntary control of breathing eg need for speech
 - 3rd = concerned with involuntary non-rhythmic resp control eg swallow, cough, hiccup

Sensors
- central:
 - respond to PCO2
- peripheral:
 - respond mainly to PO2 but also slightly to other stimuli

Central Chemoreceptors
- ventral surface of medulla near exit of CN IX, X
- located in brain ECF (bathed in CSF)
- respond to changes in H+:
 - (↑H+ ⇒ ↑RR)
 - (↓H+ ⇒ ↓RR)
- composition of ECF around receptors is governed by:
 - CSF composition – most impt
 - Local blood flow
 - Local metabolism
- Bbb seperates blood flow & CSF:
 - Barrier impermeable to H+ & HCO3
 - changes in blood H+ have little effect
CO2 diffuses across easily

- Blood \uparrowPCO2 \Rightarrow CO2 diffuse into CSF \Rightarrow CO2 +HCO3 \Rightarrow free H+ \Rightarrow stim chemoreceptors \Rightarrow
 \uparrowafferent input into resp centre \Rightarrow \uparrowalveolar ventilation
 \downarrowresultant \uparrowRR \Rightarrow \downarrowPCO2 of blood & CSF
- Cerebral VD that accompanies \uparrowPCO2 enhances CO2 into CSF & to chemoreceptors

- Minute volume of vent \uparrow2-3L/min for each \uparrowmmHg PaCO2
- CSF
 - Normal pH = 7.32
 - Less proteins than blood \therefore less buffering \therefore change PCO2 in CSF \Rightarrow bigger change in pH than
 in blood
- Prolonged CSF pH change eg PCO2 chronically raised in COPD:
 - Change over hours
 - \uparrowtransport of HCO3- into CSF from blood
 \downarrowCl- ions move out to maintain neutrality
 - \therefore chemoreceptors are reset and lose sensitivity to high PCO2 level
 - CSF usually doesn’t return to 7.32
 - Move to hypoxic drive
 - Opposite is also true:
 - Chronic hyperventilation in ICU
 - Pt continue to hyperventilate when onto spont vent
 - Adjustment quicker than renal compensation
 - \downarrowCSF pH vital effect on RR and arterial PCO2
- Hypoxia:
 - no effect on central receptors
 - will directly depress the medullary resp centre in the absence of periph input

Peripheral Chemoreceptors

- 2 bodies:
 - Carotid bodies – bifurcation carotids
 - Aortic bodies – below aortic arch
- Contain glomus cells of 2 types:
 - Type I –
 - large dopamine content, connect to carotid sinus nerve
 \downarrow site of chemoreception
 - Type II
- Carotid bodies:
 - most impt of 2 receptors
 - Afferent limb = glossopharyngeal nerve
- Aortic bodies:
 - Innervation from vagus
- Respond to:
 - Arterial PO2 (not venous) – [biggest effect]
 - Afferent firing begins around 500mmHg
 - Little firing until PO2 <100mmHg
 - Sensitive to low O2 tension NOT content
 \downarrow \therefore no response to anaemia/COHb
 - Response rate v fast
 - Only sensor for PO2
 - Hypoxic ventilatory drive
 - \downarrowMAP \Rightarrow \downarrowperfusion of bodies \Rightarrow \uparrowafferent firing \Rightarrow hyperventilation
 - \downarrowpH
 - in carotid [not aortic bodies]
• **Blood flow to periph chemoreceptors:**
 - Per weight receive highest blood flow in body
 - Flow exceeds already high metabolic demand by x10
 - Met demand \(\therefore \) met by dissolved O2 fraction
• **Effects of activation of periph chemoreceptors:**
 - ↑Ventilation – obviously
 - also:
 - bradycardia
 - hypertension
 - ↑bronchiolar tone
 - ↑ed adrenal secretion
• **carotid vs aortic bodies:**
 - carotid:
 - ↑ed vent effects
 - aortic:
 - ↑ed circulatory effects
 - does not respond to pH changes
Lung Receptors

Pulmonary Stretch Receptors
- lie in airway smooth mm [not alveoli]
- impulses return via vagus nerve (myelinated)
- in general prevent hyperinflation of lungs
- 2 types
 - slowly adapts (SAR)
 - activity sustained with continued lung inflation
 - ie little adaptation
 - d/c in response to distension of lung
 - rapidly adapts (RAR)
 - superficial mucosal layers between epithelial cells
 - stim by changes in:
 - tidal volume
 - resp frequency
 - lung compliance
 - noxious gas/smoke
 - dusts
 - cold air
 - some mechanoreceptor functions
 - ± histamine release as in asthma attacks
 - d/c stretch BUT also nociceptive & chemosensitive [not SAR]
 - reflex \(\Rightarrow\) bronchoconstriction & \(\uparrow\) RR
- both d/c receptors via stretch \(\Rightarrow\) \(\uparrow\) exp time \(\Rightarrow\) \(\downarrow\) RR
 - Hering-Breuer inflation reflex
 - \(\downarrow\) only impt when tidal volume >1litre eg exercise
 - \(\downarrow\) also see deflation reflex \(\Rightarrow\) stim of inspiration activity

J Receptors
- endings of nonmyelinated C fibers
- found in alveolar walls close to capillaries
- afferent vagus in nonmyelinated fibres
- cause rapid shallow breathing (although intense stim \(\Rightarrow\) apnoea)
- activated by:
 - engorgement of pulmon capillaries
 - \(\uparrow\) interstitial fluid volume of alveolar wall
 - \(\downarrow\) cause rapid shallow breathing in LVF & pulmon oedema

Bronchial C fibers
- supplied by bronchial circ (not pulmon circ as in J receptor)
- cause:
 - rapid shallow breathing
 - bronchoconstriction
 - mucous secretion

Other Receptors
- joint & mm receptors:
 - impulse from moving mm part of stim for ventilation in early exercise
- gamma system:
 - resp mms contain mm spindles which sens elongation \(\Rightarrow\) reflex control of strength of contraction
 - involved when large efforts required to move lung in obstruction \(\Rightarrow\) dyspnoea
- phrenic nerve afferents:
 - phrenic stim \(\Rightarrow\) \(\downarrow\) phrenic efferent activity
 - but stimulation of some smaller ones has opposite effect
By Adam Hollingworth

9. Control of Ventilation

- role? = perception & compensation for incr inspiratory loads
- impt in ‘breaking point’ during breath holding

arterial baroreceptors:
- primary role in circulatory control but has some effect on resp system
- ↑bp ⇒ reflex hypoventilation or apnoea via sinus baroreceptors
- converse true: ↓bp⇒ hyperventilation
- process unknown

pain & temp:
- pain: period of apnoea followed by hyperventilation

Lung Reflexes

inflation reflex:
- inhibition of inspiration in response to ↑ed pulmon transmural pressure eg sustained lung inflation
- significance in man uncertain
- present in neonates & infants

deflation reflex = augmentation of inspiration in response to deflation

head’s paradoxical reflex:
- =reversal of inflation reflex
- sudden inflation ⇒ transient insp effort before onset of apnoea (due to inflation reflex)
- might be ‘gasp reflex’ in neonates
- could be norm feature of breathing in adults

Reflexes in URT

nose:
- respond to mechanical & chemical stim
- can cause apnoea as part of diving reflex
- irritant receptors
- ⇒ sneeze, cough, bronchoconstriction

pharynx:
- mechanoreceptors respond to pressure
- activate pharyngeal dilator mms
- irritants cause:
 - bronchodilation
 - HTN
 - Tachycardia
 - ↑secretions in LRT

larynx:
- dense innervation:
 - supraglottic = SLN (internal branch)
 - infraglottic = RLN
- irritant receptors – stim ⇒
 - cough
 - laryngospasm
 - bronchoconstriction

cough reflex:
- elicited by chemical or mechanical stimuli arising in larynx,trachea,carina, main bronchi
- can be voluntarily or involuntarily
- reflex has 3 stages:
 - inspiration – enough input for expiratory part
 - build up of pressure in lungs by contraction of exp mms against closed glottis
 - forceful expiration through narrowed airway
 - high velocity airflow sweeps irritant material up towards pharynx
 - ↑pressure of 300mmHg in throax, arterial blood & CSF can be seen
o heating of skin ⇒ ↑RR

Other Inputs
• higher centres:
 o cerebral cortex –
 ▪ start of exercise
 ▪ coordination with speak/cough
 o pons – pontine breathing
 o hypothalamus
 ▪ pain/fear/anxiety/temp
• hormonal influences: Adrenaline & NA

Integrated Response
Response to CO2
• = most impt control of vent under norm circumstances
• ↑ventilation by
 o central chemoreceptors - ↑H+ in brain ECF from ↑PCO2 in blood
 o periph chemoreceptors –
 ▪ only play a role if significant ↓ventilation or hypoxia
 ▪ primarily respond to ↓PO2 but also respond to (↑PaCO2 & ↓pH)
 o anaerobic metabolism ⇒ ↑lactic acidosis ⇒ carotid chemoreceptor ↑ventilation
• vent response is magnified if PO2 is lowered:

![Diagram](image)

- PCO2 held to within 3mmHg during normal day
- Rises slightly during sleep
- ↓PCO2 very effective in ↓stim to vent
- vent response to CO2 is ↓ed by:
 o sleep
 o ↑age
 o trained athletes
 o drugs – eg opiates & barbituates
 ▪ eg opioids act:
 ▪ direct inhibition on medullary centre via mu receptors
• indirectly on pons via delta receptors
 o (↑ed WOB) – neural output not reduced but not as effective in producing vent
• trained athletes have low CO2 sensitivity

Response to Oxygen
• only periph chemoreceptors involved
• virtually no control at normal PCO2 levels
 ➜ if PCO2 35.8: PO2 needs to <50mmHg before ↑vent
• ↑ing PCO2 levels ⇒ ↑O2 sensitivity & vent response
• control becomes impt
 o high altitude
 o long term hypoxaemia by chronic lung disease
 ▪ chronic CO2 retention ⇒ pH brain ECF compensated by inc intake of HCO3-
 ▪ lost most of incr stim to ventilation from CO2
 ▪ also no pH stim of periph chemoreceptors due to renal compensation
 ➜ ↓: ↓PaO2 becomes chief stim to ventilate

Response to pH
• ↓art pH ⇒ ↑RR
• difficult to separate response to ↑CO2 to ↓pH
• met acidosis – partially compensated have ↑pH & ↓PCO2
 ➜ compensation driven by pH receptors
• sensed in
 o periph chemoreceptors – main
 o central chemoreceptors – only if large pH change where bbb becomes permeable to H+ ions

Response to Exercise
• normal ventilation 4L/min
• exercise ⇒ ↑total ventilation 120Litre/min x15 resting level
• cause of ↑ventilation largely unknown
• changes in exercise:
 o PaCO2 ↓ slightly during severe ex
 o PaO2 slightly ↑
 ➜ although may ↓ in strenuous ex
 o pH – constant mod ex, ↓during strenuous due to lactic acid
• stimuli suggested:
 o passive movement of limb – muscle receptors
 o oscillations in PaO2 & PaCO2 not the mean
 o central chemoreceptors regulate PCO2 by a servomechanism
 o ↑CO2 load presented to lungs in venous blood ⇒ ↑vent
 o ↑temp
 o impulses from the motor cortex

Abnormal Patterns of Breathing
• severe hypoxaemia ⇒ Cheyne Stokes resp:
 o pattern:
 ▪ apnoea 10-20 secs
 ▪ period hyperventilation with fluctuating Vt
 o seen at
 ▪ high altitude when asleep
 ▪ heart disease
 ▪ brain damage
 o caused by delay in chemoreceptors sensing change in PCO2 ∴ resp centre hunts for equilibrium but overshoots
Physiology of Breath Holding

Influence of PCO2 & PO2
- with breathholding after breathing RA:
 - PACO2 (\& PaCO2) remain constant @ breaking point
 - \~50mmHg
 - concominant hypoxia is more important
- preoxygenation:
 - delays onset of hypoxia
 - breath holding times much more prolonged
 - \(\uparrow \)PCO3 at breaking point
- if resect carotid body:
 - breaking point cure displaced up & left
 \(\leftarrow \) ie tolerate higher PaCO2 and lower PaO2
- experienced breath holders have blunted response to PaCO2 but not to hypoxia
- extreme duration of breath holding can be achieved:
 - post hyperventilation & preoxygenation
 - can see up to 14mins
 - limited by decreasing lung volume towards RV due to O2 uptake

Effect of Lung Volume
- time before break point directly proportional to lung volume at onset of breath hold
- due to:
 - uptake of O2 from alveoli
 - \(\uparrow \)ing afferent activity form diaphragm/chest wall/lung as lung volume \(\downarrow \)
 \(\leftarrow \) if block all glossopharyngeal & vagal afferents & NMB then \(\Rightarrow \) prolonged breath hold
- \(\therefore \) much of distress towards end breath hold due to frustration \& involuntaryresp mm contraction
Summary

- Central chemoreceptors respond to changes in the concentration of CO2, which alters the pH of CSF.
- Alterations in HCO3- of CSF modulate pH.
- Peripheral chemoreceptors:
 - Chiefly carotid body
 - Respond to ↓PO2 & ↑PCO2 & ↑H+
 - Response to O2 small above 50mmHg
 - Response to CO2 less than central receptors but more rapid
- PCO2 is the most important factor controlling ventilation in normal conditions.
- PO2 is only important at high altitude and lung disease.
- Exercise causes a significant increase in ventilation but why?