5.CVS Response to Function

Table of Contents

CVS Response to Changes in Posture ... 2
 Supine ⇒ Erect .. 2
Shock .. 3
 Hypovolaemic Shock .. 3
Coordinated Response to Exercise .. 5
 Cardiac Output .. 5
 Timing of Changes .. 5
 CVS Changes ... 5
 Muscle Blood Flow .. 6
Blood Flow to Other Organs ... 6
Summary CardioResp Control During Exercise .. 6
Cardiac & Vascular Function Curves .. 7
CO = VR .. 7
CVS Response to Changes in Posture

Supine ⇒ Erect

CVS Challenges

• ↓ in MAP: = due to ↓ CO due to ↓ VR
 └ venous pooling of blood in the lower extremities
 effect occurs within seconds, but not immediately.

• Hydrostatic effects on CPP:
 o brain is ~ 30 cm higher than level of the heart in the erect position (as opposed to the supine)
 o ↓MAP at level of brain of ~ 22 mmHg
 o effect = immediate.
 "NB: ↓MAP at brain level is offset by a similar:
 o ↑ CVP venous side (brain circulation is like an inverted U-tube) as well as on the
 o ↓ CSF pressure.
 • CPP is further augmented by an increase in VR from the brain to the heart in the erect position

• Summary: the main challenge to the CVS (and the brain circulation) is ↓MAP caused mainly by ↓VR
 ⇒ ↓CO.

The CVS response

• baroreceptor reflex mechanism:
 o ↓ MAP ⇒ sensed by carotid (mainly) and aortic baroreceptors ⇒ ↓ traffic up to NTS ⇒ via
 medullary control centre ⇒ ↑ SNS outflow and ↓ PNS outflow.
 o The ↑ SNS outflow causes: [remember: MAP (minus RAP) = CO x SVR]
 ▪ [↑preload] peripheral venoC ⇒ ↑ VR ⇒ ↑ CO ⇒ ↑ MAP
 ▪ [↑afterload] peripheral vasoC ⇒ ↑ SVR ⇒ ↑ MAP (slight ↓ in SV due to afterload increase, but net
 effect = ↑ MAP)
 ▪ ↑ cardiac contractility ⇒ ↑ CO ⇒ ↑ MAP
 ▪ ↑ Heart rate ⇒ ↑ CO ⇒ ↑ MAP
 o

 NB: Baroreflex ⇒ vasoconstriction = more effective than venoconstriction to restore MAP
 """"not to be confused with the vascular function curves where vasoconstriction shifts the curve more up than what
 vasoconstriction rotates it downwards"

• Cerebral pressure autoregulation: a.k.a. the myogenic mechanism:
 o effective at maintaining a constant cerebral blood flow within a MAP range of 50 – 150 mmHg.
 o It effects this by changing the CVR.
 o Onset is not immediate though.

\[
\frac{\text{MAP} - (\text{CVP or ICP})}{\text{CVR}} \quad \leftarrow \quad \text{arterial baroreflex}
\]

\[
\text{CBF} \quad \leftarrow \quad \text{pressure autoregulation}
\]

• Activity: Mm pump further augments VR
 "in conjunction with the one-way valves in the veins to prevents further venous pooling

Overview of CVS Response

• Baroreceptor & cerebral autopressure reg effective in normal people to prevent fainting when standing
 from supine.
• If the arterial baroreflex is blunted, ⇒ syncope
 "eg elderly and diabetic autonomic neuropathy"
• The standardized valsalva test can be used to check the integrity of the baroreflex
Shock

- Shock = inability of circulation to ensure adequate O2 delivery to the body tissues
- Types:
 - **hypovolaemic**: - haemorrhagic (loss of all blood components)
 - loss of plasma (burns)
 - loss of fluids + electrolytes (D+V’s, ↑ sweating etc)
 - Internal (3rd spacing; eg ascitis, ileus, pancreatitis)
 - **distributive**: - septic
 - anaphylactic
 - neurogenic (including sympathectomy of a SAB)
 - vasodilator drugs,
 - acute adrenal insufficiency
 - **cardiogenic**: - pump failure (AMI)
 - dysrhythmia (tachy or brady)
 - acute valvular dysfunction / rupture of ventricular wall or IV septum
 - **Obstructive**: - tension pneumothorax
 - massive pulmonary embolus
 - pericardial disease (tamponade, constriction)

- DO2 = CO x CaO2
- ∴ whenever discuss shock must consider all factors influencing CO:
 - preload
 - afterload
 - conreactility
 - HR

Hypovolaemic Shock

- Very common
- Causes both:
 - ↓CO via volume loss ⇒ ↓preload ⇒ ↓CO ⇒ ↓MAP
 - ↓CaO2

Resp Response: Severe ↓MAP ⇒ hypoxia/hypercarbia/acidosis ⇒ periph chemoreceptor stimulation ⇒
- ↑SNS &
- hyperventilation
 - in attempt to defend CaO2

CVS response

- can be classified by **time**:
 - Immediate:
 - **Sensors**:
 - Arterial baroreflex – [biggest response]
 - aim to restore CO & MAP to normal
 - ↓MAP sensed in carotid & aortic baroreceptors
 - ↓volume sensed by low pressure sensors of atria & large veins
 - hypoxia/hypercarbia/acidosis sensed by periph chemoreceptors
 - **Effect- predominantly of ↑SNS & ↓PNS via baroreceptors**:
 - venoC: ↑VR ⇒ ↑CO ⇒ ↑MAP
 - vasoC: ↑SVR ⇒ ↑MAP
 - widespread sparing only brain & heart
 - ↑HR: ↑CO & ↑MAP
 - in severe shock also see initial tachycardia ⇒ transient brady ⇒ back to tachy
 - ↑unmasking of vagal tone to help clotting
• ↑contractility: ↑CO ⇒ ↑MAP
 o Intermediate:
 ▪ Autotransfusion: Interstitial fluid move to intravascular (reversal of Starling forces)
 \[\text{Up to 1000 ml fluid /hr can be moved intravascular via this mechanism.} \]
 ▪ Mobilization of reserve volumes: splanchnic/liver mainly
 ▪ Decreased renal blood flow – via ↓MAP
 o (normally ~25% CO)
 o initial +ve effects:
 o efferent vessels constricted > afferent
 o ↓ renal plasma flow ⇒ ↓GFR ⇒ filtration fraction ↑ed
 o ↑ed Na retention
 \[\text{⇒ ↓UO which serves to preserve circulating volume} \]
 o late –ve effects:
 o azotemia ie nitrogen waste products retained ⇒ ↑Urea & creat
 o ARF
 ▪ Further redistribution of CO: ↓ muscle flow, ↓ skin flow
 ▪ ↑ Muscle pump activity of legs (restlessness) ⇒ ↑VR
 ▪ ↑ ADH release (from volume receptor input) ⇒ water retention
 ▪ ↑ Thirst + other behavioural responses
 ▪ ↑ renin/angiotensin/aldosterone mechanism
 ▪ ↑ adrenaline from adrenal medulla
 o Delayed (post haemorrhage) – aim to restore components lost in blood
 ▪ 12 – 72 hrs :
 o plasma volume restored to normal
 o Albumin replaced rapidly from extravascular stores
 ▪ Days:
 o plasma proteins and enzymes: ↑ liver synthesis
 ▪ Days to weeks:
 o RBC’s: ↑EPO from kidneys ⇒
 o reticulocytes peak day 10 days (norm ~1% retics in blood)
 o mature RBC’s back to normal 4 – 8 weeks.
 o Other: PLT’s, WBC’s
 • Can also be classified by severity:
 o mod shock ⇒ ↓pulse pressure
 ▪ due to diastole caused by catecholamines ↑ing vascular tone
 ▪ ⇒ ↓discharge baroreceptors ⇒ ↑symp tone ⇒ ↑VC & ↑HR
 o severe shock ⇒
 ▪ ↓mean pressure
 ▪ tachy⇒brady⇒tachy
 ▪ widespread VC – spares only brain & heart vessels
 ▪ kidneys – initial positive changes but then –ve acute failure
 • Any inadequate perfusion to tissues ⇒
 o ↑anaerobic glycolysis ⇒ lactic acid accumulation
 o low/mod levels of lactic acid excellent fuel for heart/CVS system
 \[\text{but tipping point ⇒ acidosis} \]
 • lactic acidosis ⇒
 o ↓myocardial contractility
 o ↓vascular response to catecholamines ie ↑ed VD
 o toxic to CNS ⇒ coma
Coordinated Response to Exercise

- muscular exercise requires 3 tasks from circulation:
 - ↑ pulmon flow – to enhance gas exchange
 - ↑ ed RV output
 - ↑ ed flow thru working mm
 - ↑ ed LV output
 - local vasoD
 - maintain stable bp
 - controlled vasoC in non active tissues

- other issues need addressing:
 - energy production & utilisation
 - temp reg
 - fluid shifts
 - acid base changes/compensation

- exercise can be
 - static – isometric
 - dynamic – isotonic

Cardiac Output

- CO ↑ by x5 ie 5 l/min to 25 l/min
- Heart = demand led pump:
 - ↑ ed demand set by exercising mm effecting ↑ VR
- ↑ VR caused by:
 - venoC (↑ VR)
 - vasoD (↓ SVR)
 - mm pump of limb muscles (need intact venous valves)
 - thoracic pump:
 - ↓ ITP & ↑ abdo pressure with ↑ ed inspiration
 - ↑ RR & ↑ depth of insp in exercise enhances effects
 - -ve effects of expiration prevented by venous valves
 - ↑ myocardial contractility
 - ↑ HR
 - diversion of blood from non active tissue (splachnic & renal circulations)
 - local metabolites in exercising mm ⇒ arteriolar dilation ⇒ ↓ SVR ⇒ ↑ CO ⇒ ↑ blood flow to exercising mm ⇒ ↑ VR

Timing of Changes

- start of exercise:
 - sudden ↑ CO then gradual ↑ to steady state
- sudden initial changes 2nd to:
 - cortical activity (motor area)
 - sensory nerve activity assoc with movement
 - mm/thoracic pump ⇒ ↑ VR
- slow changes to steady state 2nd to:
 - vasoD in mm
 - redistribution of CO
 - ↑ SNS
- @ end of exercise:
 - abrupt ↓ CO
 - exponential fall

CVS Changes

- HR changes:
 - ↑ linearly up to max ~200/min in young adult
o initially caused by ↓vagal output
o later by ↑ed SNS output

• stroke volume:
o ↑ in non-linear way
 o big ↑ in light/mod exercise; only small ↑ into severe exercise
 o reasons for ↑:
 ▪ ↑VR & ↓: ↑LVEDV
 ▪ ↑contractility ⇒ ↓LVESV

• blood pressure:
o SBP can rise to 190-225mmHg 2nd to ↑ed CO
o DBP may increase slightly or even fall 2nd to ↓SVR
 ▲ NET result ▲pulse pressure x2-3

• Baroreceptor reflex – reset to higher level in severe exercise

Muscle Blood Flow

• @rest:
o mm blood flow = 2-3ml/100g/min
 ▲ mediated by SNS constriction of arterioles
o ~20% of CO – despite skeletal mm being ~40% of lean body mass
o precapillary sphincters closed ⇒ diverts mm blood flow away from microcirculation to main channels

• @exercise see:
o relaxing of precapillary sphincters due to:
 ▪ ↓PO2
 ▪ ↑PCO2
 ▪ ↑H
 ▪ ↑temp
 ▪ ↑K
 ▪ ↑ADP in interstitial fluid
 ▲ result is ↑total blood flow to max 50ml/100g/min ie ↑x20 ~80-90% of CO
o ↑diffusion of O2 into mm cell & ↑total O2 uptake by up to x40:
 ▪ ↑delivery O2
 ▪ R shift of OHDC

• Static contraction: sig ↓mm flow ⇒ ↑pressure in mm
• Isotonic contraction good mm flow as flow occurs in relaxation

Blood Flow to Other Organs

• ↑coronary flow:
o must meet extra cardiac work
o mediated by:
 ▪ local metabolic autoreg
 ▪ circulating catecholamines stim B2
• ↓flow to GIT & kidney – SNS activity shifts flow to exercising mm
• ↑skin flow to help with heat loss (SNS mediated)
• cerebral flow:
o remains constant at all levels of ex ~50ml/100g/min
o but relatively much smaller % of ↑ed CO

Summary CardioResp Control During Exercise

• 1st ventilation ↑s keeping close proportion of:

 ↑VO2 + VCO2 ⇒ PaO2 + PaCO2 = normal

• near max intensity: V_A rises > VO2 ⇒ ↓ PaCO2
• 1st 5-10 seconds of exercise: ↑HR 10-15/min due to ↓ vagal tone, then steady ↑ing HR over 5-10min due to ↑ SNS output
 ↦ initial tachy under central command
• end of exercise: HR & V_A fall sharply initially then more gradual ↓
• during exercise:
 o baroreceptors reset to operate at higher bp ranges allowing ↑ ed HR, ↑ CO, ↑ MAP
 ↦ in moderate exercise this resetting compensates for ↓ SVR
 in more strenuous exercise need ↑ SNS to compensate
 o resp chemoreceptor reflexes also seem to reset:
 ▪ ↑ ed response to change in PaO2
 ▪ severe exercise: ↑ lactate (↓ pH) additional stimulus

Cardiac & Vascular Function Curves
• Exercise requires an ↑ CO & control of heart & vasculature
• If isolated symns stim to heart (cardiac symp nerve stim):
 o ↑ MAP ⇒ ↓ CVP both of which favour ↓ ed SV (ie opposite of desired effect)
• in exercise:
 o [↑ afterload] ↑ ed MAP minimised by Vasod of exercising mms
 o [preload] ↓ CVP minimised by:
 ▪ periph venoC
 ▪ mm & thoracic pumps encouraging VR
• in upright exercise SV can double due to:
 o [preload] ↑ EDV (from ↑ CVP)
 o [contractility] ↓ End systolic volume – from ↑ EF via ↑ ed contractility

CO = VR

Ohms Law:

\[
\frac{\text{MSP} - \text{RAP}}{\text{VVR}} = \frac{\text{MAP} - \text{RAP}}{\text{SVR}} = \frac{\text{MPAP} - \text{LAP}}{\text{PVR}}
\]

MSP = mean systemic pressure ~ 7mmHg

RAP ~ 2-3 mmHg

VVR = venous vascular resistance

⇒ ΔP ~ 5mmHg ie venous resistance is very low

c/f

LHCO = L heart CO

ΔP ~ 88mHg

c/f

RHCO = R heart CO

Mean Pulmonary artery P ~ 15mmHg

LAP 5mmHg

ΔP ~ 10mHg