5. Blood Flow & Other Functions

Table of Contents

Mixed Venous Blood ..2
 Factors Affecting PvO2 (or PvCO2) ..2
Anatomy ..3
Pressures in Pulmon Vessels ..3
 Pressures Around Pulmon Blood Vessels ..4
Pulmon Vasc Resistance ...4
Measurement of Pulmon Blood Flow ..5
Pulmonary vs Systemic Circulation ...5
Passive Distribution of Blood Flow ..6
Active Control of Circulation ...7
Water Balance in the Lung ...8
Non-Respiratory Functions of Lungs ..9
 Metabolic Functions of Lung ..9
Summary ..10
Mixed Venous Blood

• Represents mixture of all systemic venous blood draining from all tissue capillary beds of the body (including myocardium)

• Comprised of VR from:
 o SVC
 o IVC
 o Myocardium - from coronary sinus
 ↓ myocardium has highest extraction ratio of O2 (67%) ∴ coronary sinus blood has lowest O2 content & ∴ PO2

• ∴ only place adequate mixing ∴ sampling = pulmonary artery (PA catheter or Swan Ganz)
 ↓ by convention 2.5cm into pulmonary artery

• Normal values:
 o $P_{vO2} = 40mmHg$
 o $P_{vCO2} = 46mmHg$
 o $C_{vO2} = 15mlO2/100ml blood$
 o $C_{vCO2} = 52mlCO2/100ml$
 o $SvO2 75\%$

Factors Affecting P_{vO2} (or P_{vCO2})

• Factors can effect P_{vO2} or P_{vCO2} as both in equation

• This will be according to Fick principle:

 • Normal equation: $Q = flow; V = consumption$

 $Q_{min} = V_{min} / (A content - V content)$

 • Can rearrange:

 $V = Q (A content - V content)$

 • Then:

 $V content = (A content - V) / Q$

 • In this case:

 $C_{vO2} = (CaO2 - VO2) / Q$

• It is known that P_{vO2} proportional to C_{vO2} by virtue of oxy-Hb dissociation curve

• So a ↓P_{vO2} may be due to:
 o ↓$CaO2$ ie via ↓Hb (or abnormal Hb), or ↓SpO2
 o ↓CO (ie Q)
 o ↑VO2 eg fever, hyperthyroid, MH, exercise, shivering

Another Way of Looking at It:

• Oxygen delivery (or flux) = CaO2 x CO
 ∴ P_{vO2} depends on balance between oxygen delivery and oxygen consumption
Anatomy

- Pulmonary arteries accompany airways branching as far as terminal bronchioles
- Then \Rightarrow capillary bed
- Pulmon veins
 - collect oxygenated blood
 - run between lobules
 - unite into 4 large veins into LA

Pressures in Pulmon Vessels

- entire CO from RV flows through the alveoli
- \therefore perfusion vastly exceeds nutritional demands of alveoli (VO2)
 - \Leftarrow metabolic factors exert no influence on flow
 - \Leftarrow ie no autoregulation either pressure or metabolic exists in pulmon circ

- metabolic needs of bronchi are met by independent systemic circulation (bronchial circulation)

\[Q_{\text{pulm}} = \frac{\Delta P}{\bar{P}_{\text{V}}} \]

Where $Q_{\text{pulm}} = \text{RV cardiac output} = \sim 5 \text{l/min or } \sim 70 \text{ml/kg/min}$

- ΔP: contrast pressures inlet to outlet systems:
 - systemic (MAP – RA pressure): $90_{\text{(aorta)}} - 2_{\text{(RA)}} = 88 \text{mmHg}$
 - pulmonary (MAP – LA pressure): $15_{\text{(pulmon art)}} - 5_{\text{(LA)}} = 10 \text{mmHg}$
 - \Leftarrow: PVR must be very low compared to systemic circulation!

- \therefore low pressures in pulmon system mean little need for vasc smooth mm tone
 - due to:
 - lung must accept all CO all the time
 - no concern over global organ regulation of control
 - less gravity to overcome than ULs/head

- sympathetic vasomotor nerves exist – but have no defined physiological role

- pulmonary capillary pressures:
 - uncertain
 - pressures through pulmon system more linear than systemic system
 - varies considerably through lung due to hydrostatic pressures
Pressures Around Pulmon Blood Vessels

Capillaries
- pulmon capillaries are entirely surrounded by gas
- little or no support to capillary wall \(\therefore\) liable to collapse
- alveolar pressure \(\sim\) atmospheric pressures
 \(\leftarrow\) esp when breathing, glottis open
- effective pressure around capillary = alveolar pressure
 \(\leftarrow\): when \(\uparrow\)alveolar pressure > pressure inside cap \(\Rightarrow\) collapse
 \(\leftarrow\) this difference = transmural pressure

Arteries & Veins
- pressure around large vessels can be much lower than alveolar pressure
 - lung expands \(\Rightarrow\) pulls vessels open by radial traction of lung parenchyma that surrounds them
 - \(\therefore\) effective pressure low
- \(\therefore\) classified into
 - alveolar vessels:
 - calibre determined by pressure within them & alveolar pressure
 - extra alveolar vessels
 - all art & vein in lung parenchyma
 - calibre greatly affected by lung volume

Pulmon Vasc Resistance
- vascular resistance = \(\frac{\text{input pressure} - \text{output pressure}}{\text{blood flow}}\)
- Mean pulmon artery pressure (MPAP) = 15mmHg
- Pulmon arteries & arterioles are shorter & thin walled compared to systemic system
- systemic vs pulmon pressures = x8
- as blood flow same \(\therefore\) resistance must be x8 in systemic system
- pulmon vasc resistance =
 - \(\frac{(15-5)}{6}\)
 - \(= 1.7\text{mmHg/L/min}\)
- systemic =
 - \(\frac{(100-2)}{6} = 16.3\text{mmHg/L/min}\)
- PVR made up from:
 - Arterial vessels \(~30\%\)
 - Microvascular (arterioles to venules) \(~50\%\)
 - Veins \(~20\%\)
- More even spread of PVR \(\Rightarrow\) pulsatile flow through pulmon circ
- Capillary pressure = 8-10mmHg
 \(\leftrightarrow\) halfway between MPAP & LAP
- \(\uparrow\)LAP to 20-25mmHg \(\Rightarrow\) big enough \(\uparrow\)capillary pressure \(\Rightarrow\) pulmon oedema
- benefit of low PVR is that with any \(\uparrow\)CO see \(\downarrow\)ed relative \(\uparrow\)pulmon vasc pressure
- PVR is lowest at FRC
Blood Flow & Other Functions

- Pulmonary vascular resistance can become even smaller as pressure within it rises:
 - 2 processes:
 - Recruitment:
 - ↑ pressure ⇒ ↑ flow or opening of shut down vessels ⇒ ↓ resistance
 - Chief mechanism in ↓ pressure in pulmonary artery at low starting pressures
 - Distension:
 - In higher starting pressures
 - = change in shape from nearly flat to more circular
 - Strong evidence cap wall resists stretching
 - Can both occur together also
 - Lung volume also affects pulmonary resistance:
 - Extra-alveolar vessels – large lung volume ⇒ ↓ resistance
 - High volume lung pulls vessels open
 - @ low volume – smooth mm ⇒ ↑ resistance
 - Lung collapsed – critical opening pressure not reached
 - Alveolar vessels – large lung volume ⇒ ↑ vascular resistance
 - Depends on transmural pressure ie alveolar : vascular pressure
 - During large inspirations: ↓ vascular pressure ⇒ ↑ transmural pressure ⇒ squash vessel
 - Also see stretching & thinning of alveolar walls ⇒ direct affect on calibre of capillaries
 - Drugs that affect smooth mm will affect pulmonary resistance:
 - VCs ⇒ ↑ resistance = serotonin, histamine, NA
 - Especially good when lung volume is low
 - VDs eg Ach

Measurement of Pulmonary Blood Flow

- Use Fick principle:
 - Blood flow/min = O2 consumption/min
 - Cone of O2 in pulmonary artery – Cone O2 in pulmonary vein

- O2 consumption measured with spirometer.
- Direct vein & arterial sampling with catheters

Pulmonary vs Systemic Circulation

Blood Volume

- Erect: 15% circulating volume = central:
 - Pulmonary Circ (Lungs) ~ 500ml:
 - 3% is in the pulmonary capillaries
 - Heart ~ 250ml
- Supine: ↑ to ~ 25% of circulating volume = central

Anatomical

- Pulmonary circulation:
 - Dual circulation – pulmonary arteries & bronchial arteries
 - ~ 30cm short
 - Thin walled vessels – large pulmonary arteries only 30% of aorta wall thickness
 - Pulmonary post capillary venules contain smooth mm (systemic do not)
Functional Differences
• pulmon =
 o gas exchange
 o metabolic functions – is exposed to whole of CO
• systemic = delivery of O2 & nutrients to tissues

Vascular Resistance
• PVR =
 o 1/10th systemic
 o Minimal at FRC
 o Evenly distributed along whole circulation ∴ flow pulsatile throughout
 ↑systemic max at arterioles ∴ non pulsatile distal to arterioles
 o Opposite stimuli for VC/VD compared to systemic:
 • ↑VC: hypoxia, hypercarbia, acidaemia

Pressures (P pressure: S pressure)
• systolic= 25:120
• diastolic 8:80
• mean = 15:90
• Perfusion pressure:
 o Pulm: 25-5 = 10mmHg
 o Systemic: 90-2 = 88mmHg

Vascular Tone
• Systemic circulation:
 o ↑ed resting vasomotor tone
 o ↑ed response to endogenous & exogenous stimuli
 ← ↓: with ↑ed tone blood volume shifts from periph to central

Gravity
• erect ⇒ supine: shift volume centrally
• vertical pressure gradient in pulmon vessels in combo with effect of alveolar pressure = Starling resistor

Filtration
• pulmon circ good at filtering:
 o clots
 o air
 o debris
 ← preventing systemic embolisation

hypoxic pulmonary vasoconstriction
see later
metabolic functions
see later

Passive Distribution of Blood Flow
• Upright/supine lung – blood flow ↓s in linear fashion from dependant to nondependent (bottom to top)
• During exercise ↓ in regional differences
• Explained by hydrostatic pressures:
 o Pulmon system = Low pressure
 o Vertical Column of blood exerts 23mmHg difference from top to bottom 2nd to gravity
 o Alveolar vessels are exposed to gravity AND alveolar pressure
 ← = a ‘starling resistor’
 ← defines ‘pressure heads’ which prevent flow
 o Lung split into zones
 • Zone 1 – top region (P_A > P_a > P_v)
 • Pulmon art pressure falls close/below atmospheric ⇒ little/no flow
Only occurs under pathological conditions eg
- ↓art pressure eg haemorrhage OR
- ↑alveolar pressure eg positive pressure vent
- ventilated but unperfused lung . physiologic (alveolar) dead space

- Zone 2 – middle section (P_a > P_A > P_v) (driving pressure = Pa-P_A)
 - Pulmon art pressure > alveolar pressure
 - Venous pressure still < alveolar pressure
 - . . blood flow is determined by arterial:alveolar pressures
 ↓NOT a-v difference as in systemic situation
 ↓venous pressure only influence if > alveolar pressure
 - just below zone 1
 - capillary recruitment occurs as move down zone

- zone 3: bottom section (P_a > P_v > P_A) (driving pressure = Pa – P_v)
 - venous pressure > alveolar pressure . . . flow determined in usual way
 - blood flow determined by distension of capillaries
 ↓pressure within ↑s as go downwards
 ↓alveolar pressure constant . . . ↑ing transmural pressure
 - distension & recruitment ⇒ ↓s resistance to flow (Q = ΔP/R)
 - zone where should measure PAWPs form

 (zone 4)
 - @ low lung volume – resistance of extraalveolar vessels becomes impt
 - ↓in regional blood flow seen starting at base lung where parenchyma least expanded

NB zones 1-3 = alveolar vessels (pulmon capillaries) responsible for distribution of blood flow
Zone 4 = extra-alveolar vessels responsible

Other Causes of Uneven Blood Flow
 - some regions intrinsically higher vase resistance
 - peripheral regions of lung receive less blood than central
 - random arrangement of vessels & capillaries ⇒ inequalities of flow

Active Control of Circulation
 - hypoxic pulmonary vasoconstriction
 - contraction of smooth mm in arterioles in hypoxic region
 - response to P_AO2
 ↓not PaO2 of pulmon artery
 - also see response to PACO2 ⇒ vasodilation
 - stimulus response curve non linear ie plateau above 100mmHg P_AO2; steep <10mmHg
 - precise mechanism unknown but does not require neural control
 - theory’s :
 - perivascular tissue releases VC substance in response to hypoxia
 - inhibition of voltage K channels ⇒ ↑Ca [in] ⇒ smooth mm contraction
 - NO does play a role:
 - eNOS (endothelial) ⇒ NO ⇒ GTP to cGMP ⇒ smooth mm relaxation
 ↓inhibitors of NOS ⇒ pulmonary VC
 - endothelin 1 (ET-1) & thromboxane A2:
 - released by endothelium
 - poten VCs
 - blockers of ET-1 receptor can Rx pulmon HTN
 - hypoxic VC ⇒ directs blood away from hypoxic lung segments⇒decreases V/Q mismatch
impt in thoracic surgery to divert blood away from collapsed lung ⇒ better V/Q match than would expect

- chronic hypoxia (eg COPD) ⇒ ↑PVR ⇒ cor pulmonale
- @high altitudue see generalised pulmon VC ⇒ ↑pulmon art pressure
- @birth:
 - fetal life –
 - pulmon VC very high partly due to hypoxic VC
 - only 15% CO through lungs
 - 1st breath oxygenates alveoli ⇒ dramatic ↓vasc resistance 2nd to VD of smooth mm
- other active processes on pulon resistance:
 - low pH ⇒ VC esp if hypoxia also present
 - autonomic ns – ↑symp output ⇒ VC

Water Balance in the Lung

- must keep alveoli free of fluid
- fluid exchange across endothelium obey’s Starlings Law

net fluid out = \((P_c – P_i) – o(\pi_c – \pi_i) x k\)

\[P_c = \text{capillary hydrostatic pressure} \]
\[P_i = \text{interstitial pressure} \]
\[O = \text{reflection coefficient ie effectiveness of capillary in preventing proteins across it} \]
\[\pi_c (~28\text{mmHg}) = \text{osmotic force of blood} \]
\[\pi_i = \text{osmotic force of interstitium} \]

- Values unknown but likely net Starling flow is outward ~10-20ml/hr into lymph
- Fluid which leaks out into interstitium of alveolar wall tracks to
 - perivascular & peribronchial space = low pressure areas sucking fluid into them
 - ⇒ hilar lymph nodes
- Pulmon oedema = engorgement of these spaces
 - aka interstitial oedema
- If pulmon oedema persists ⇒ alveolar oedema
 - fluid cross alveolar epithelium into alveolar space
 - no gas exchange possible
 - alveoli fill one by one
 - ?exact cause of fluid into space. Perhaps =
 - interstitial route drainage exceeded ⇒ ↑ed pressure to threshold
 - \(\therefore\) alveolar oedema more serious than interstitial oedema
- \(\therefore\) Mechanism to prevent pulmonary oedema:
 - lymph:
 - interstitial fluid movement towards hilum
 - interstitial pressure more –ve towards hilum .\: gradient for flow
 - lymphatic flow promoted by rhythmic external compression occurring in respiration
 - (& presence of valves in central lymph)
 - ↓ interstitial oncotic pressure
 - 2 mechanisms:
 - when filtration ↑s the NET albumin loss across membrane in filtrate ↓s
 - ↑lymph flow to wash albumin out of interstitium
 - = oncotic buffering mechanism
 - it will fail if capillary is damaged
 - high interstitial compliance:
 - large volume of fluid can accumulate in interstitium without much ↑pressure
until threshold where interstitium full ⇒ sharp ↑P ⇒ alveolar flooding

• surfactant:
 o opposes movement of water from pulmon interstitium into alveolar spaces
 o 2 forces which encourage transudation of fluid into alveoli:
 • surface tension causes pressure within alveolar lining fluid < alveolar pressure
 • pulmon cap pressure (in most of lung) > alveolar pressure
 o surfactant ↓s surface tension!

• Active removal:
 o fluid in alveolar space actively pumped out by NaK ATPase in epithelial cells
 • mechanisms quite effective at preventing at counteracting ↑ing pulmon cap hydrostatic pressures
 ⇐ Pc can ↑x3 before alveolar flooding
 • Rate of lymph flow from lung ↑s if capillary pressure is high over long period

Non-Respiratory Functions of Lungs

• Blood reservoir
 o ~ 450mls
 o Can ↑ with larger pulmonary artery pressure
 o This volume can be mobilised to ↑LVEDV (LV preload) with:
 • IPPV
 • PEEP
 • Straining
 • Valsalva eg (↓to 250ml)

• Any ↑in lung blood volume ⇒ ↓lung compliance
[central blood volume (800ml) = volume of:
 o Blood in heart (350ml)
 o Blood in lungs (450ml)]

• Filter blood –
 o small thrombi removed before reach vital organs eg brain
 o wbc’s trapped ?why
 o Also particles/fat embolism

Metabolic Functions of Lung

• lung only organ apart from heart which receives all blood
• vascular ECs responsible for metabolic properties
• endothelium actively produces NO
• number of vasoactive substances metabolised in lung:

Substances Effected
• Angiotension I – converted to angiotensin II by ACE
• located in small pits in surface of capillary ECs
• Bradykinin – 80% inactivated by ACE
• Serotonin – 98% removed by uptake & storage
• NA - ~30% removed by uptake
• Leukotrienes – almost completely removed
• Carbohydrate metabolism
• Proteases - removed

Substances not Effected
• Adrenaline –
• Angiotensin II
• Vasopressin (ADH)
• Histamine & dopamine not effected

AA metabolites
• membrane bound phospholipid AA by phospholipase A2
• lot of AA metabolism and release under certain circumstances:
 o lipoxygenase:
 ↓ leukotrienes \(\implies\) airway constriction
 o COX pathway:
 ↓ Prostagladins – potent VDs or VCs
 ▪ PGE2 – helps relax ductus arteriosus in fetus

Other Roles
• Clotting mechanism:
 o Large no of mast cells containing heparin in intersitium
• Defense mechanism – lung secretes IgA in bronchila mucus, pulmonary macrophagues
• Synthetic functions:
 o Production of surfactant
 o Protein synthesis – collagen & elastin
• Heat regulation - esp upper resp tract
• Facilitate speech
• Pharmacologic:
 o Pharmacokinetic mainly ie
 ▪ route of administration eg volatiles
 ▪ Effect site - eg bronchodilators
 ▪ Route of elimination eg volatiles & 1st pass uptake of fentanyl

Summary
• Capillaries are exposed to alveolar pressure; extra alveolar vessels have lower pressure
• Pulmon vasc resistance is low. It ↓s with ↑CO.
• Pulmon vasc resistance ↑s at low & high lung volumes
• Hypoxic pulmonary VC ↓s blood flow to poorly ventilated regions
 \(\leftarrow\) release of this at birth \(\Rightarrow\) ↑blood flow to lung in baby
• Many metabolic functions of lung – most impt angiotensin I \(\Rightarrow\) II by ACE