Table of Contents

Vasopressin .. 2
ADH Molecule .. 2
Vasopressin Receptors .. 2
Effects of Vasopressin .. 2
Metabolism ... 2
Control of Secretion ... 2
Clinical Implications ... 4

Summary Defence of Volume & Normal Osmolality .. 5

Renin Angiotension System .. 6
Regulation of Renin Secretion .. 6
Angiotensinogen .. 7
AT1 ... 7
ACE .. 7
AT2 & It's Metabolism .. 8
Actions of AT's .. 8
Tissue Renin-Angiotensin Systems .. 9
AT II Receptors .. 9

Hormones of Heart & Other Natriuretic Factors ... 9
Structure .. 9
Types .. 9
Actions .. 10
Receptors .. 10
Secretion & Metabolism ... 10
Na,K ATPase-Inhibiting Factor ... 10

Defence of Specific Ionic Composition ... 11

Endocrine Functions of Kidney ... 12
Calcitriol .. 12
EPO .. 12
Sources .. 12
Regulation of Secretion ... 13
Function ... 13
Vasopressin

- = function of vasopressin & thirst mechanisms
- total body osmolality \(\propto\) (total Na + total K) / total water
- ↑osmotic pressure in plasma \(\Rightarrow\) ↑vasopressin secretion + ↑thirst
- ↓osmotic plasma \(\Rightarrow\) ↓vasopressin + excretion solute free urine
- \(\therefore\) osmolality kept 280-295 mOsm/kg of H2O

![max inhibition vasopressin seen at <285; stim at higher values]

ADH Molecule

- = 9aa peptide hormone
- aka ADH
- made in magnocellular neurons of supraoptic & paraventricular nuclei of hypothalamus
- transported in their axons to post pituitary where stored
- released via calcium dependant exocytosis

Vasopressin Receptors

- 3 receptors:
 - V1a \(\Rightarrow\) smooth mm sustained vasoC, ↓renin secr, ↓glycogenlysis, platelet aggregation
 - V1b \(\Rightarrow\) ↑ACTH release
 - \(\leftarrow\) Go\textsubscript{Q}-linked \(\Rightarrow\) ↑PLC \(\Rightarrow\) ↑IP3 + DAG \(\Rightarrow\) ↑intracellular [Ca]
 - V2 \(\Rightarrow\) ↑cAMP levels \(\Rightarrow\) ↑protein kinases
 - vasoD, ↑H2O reabsorption, ↑vWF & f8 from endothelial cells
 - V3 = CNS (neurotransmitter)
- All G protein coupled

Effects of Vasopressin

- Vasopressin \(\Rightarrow\) concentrated hypertonic urine & ↓osmolality of plasma
- Without vasopressin \(\Rightarrow\) urine hypotonic & ↑osmolality of plasma

Renal ADH effects

V impt at physiological concentrations

- ↑ Water reabsorption (V\textsubscript{2} \(\Rightarrow\) aquaporin-2 from endosome \(\Rightarrow\) luminal membrane of principle cells).
- Synergism with aldosterone:
 - Na reabsorb/K excretion
 - Principal cells of CCDs
- Mesangial contraction \(\Rightarrow\) ↓GFR (V\textsubscript{1a})
- ↑urea reabsorption – inner medullary CDs (aquaporin 3 into basolateral membrane)
- renal afferent vasoC – V1

Non Renal ADH Effects

Less impt at physiological concentrations

- Systemic vasoconstriction (V\textsubscript{1a}):
 - effect on bp offset by ↓CO via central affect (area postrema)
 - coronary & cerebral vaosD maintained by NO mediated effect
- ↑ACTH release (V\textsubscript{1b})
- ↑Cortisol release (V\textsubscript{1a})
- Glycogenlysis (V\textsubscript{1a}) + lipolysis (↑ hormone sensitive lipase)
- neurotransmitter _ neuromodulation (V3)
- Coagulation: - ↑ Factor 8 (V2) and ↑ platelet aggregation (V1)

Metabolism

- circulating vasopressin rapid inactivated in liver & kidney
- half life 18mins

Control of Secretion

- ↑ed secretion:
By Adam Hollingworth

- ↑osmotic pressure of plasma –
 - osmoreceptors in anterior hypothalamus (OVLT & SFO ie outside BBB)
 - afferents to ADH secreting neurons
 - osmoreceptor system extremely sensitive mechanism for small ie 1-2% changes
 ⇝ ie when <2% change osmoreceptors activity > baroreceptors
- ↓ECF volume –
 - sensed by low pressure (more imp) & arterial baroreceptors
 - afferent to hypothalamus neurons
 - when >10% change volume: baroreceptor system activity > osmoreceptors
- pain, stress, exercise
- N&V
- Standing
- ATII
- Drugs eg Carbamazepine, morphine, barbituates, nicotine
 - ↓ed secretion
 - ↓osmotic pressure of plasma
 - ↑ECF volume
 - alcohol
 - local negative feedback: ADH ⇒ intramedullary synthesis of PGs which interfere with ADH induced production of cAMP

Osmotic Stimuli
- >285 rate of discharge of neurons ↑s ⇒ ↑secretion
- osmoreceptors in ant hypothalamus:
 - outside bbb, in OVLT
- thirst ?triggered by osmoreceptors also
- delicate feedback system.
- 1% change in osmolality ⇒ big changes in level of vasopressin to keep at 285

Volume Effects
- inverse relationship between rate vasopressin secretion & level of stretch in vascular system causing afferent nerve discharge
 - ↑high stretch ⇒ ↓vasopressin
- vascular sensors
 - low pressure – great veins, RA, LA, pulmon vessels
 - high pressure – carotid sinus, aortic arch
- high pressure bp changes ⇒ big change in vasopressin secretion
- low pressure monitor fullness of system
 - mod ↓in blood volume can ↓CVP with no effect on arterial bp
 ⇝: low pressure sensors primary sensors effecting volume related vasopressin
 - afferents vagi to nucleus tractus solitarius (NTS)
 - NTS via inhibitory connection to CVLM
 - CVLM via excitatory to hypothalamus
- ATII reinforces vasc stretch receptors by causing direct ↑vasopressin secretion
• Hypovolaemia and ↓bp ⇒ ↑↑vasopressin
• Hypovolaemia ⇒ L shift with steeper curve

Clinical Implications

• SIADH –
 o Eg post surgery pain & hypovolaemia both ⇒ ↑vasopressin ⇒ ↓plasma osmolality & dilutional hyponatraemia
 o Also cerebral disease, lung disease, vasopressin secreting tumours
 o Vasopressin escape – prolonged ↑vasopressin ⇒ down reg of aquaporin2 production
 o Rx with Demeclocycline = Abx which ↓s renal response to vasopressin

• DI:
 o Central DI = Vasopressin deficiency
 ▪ Tumour of hypothalamus 30%
 ▪ Post traumatic 30%
 ▪ Idiopathic 30%
 ▪ Rest – sarcoid, vasc lesions, infections
 o Nephrogenic DI = kidneys don’t respond to vasopressin
 ▪ V2 receptor X linked recessive mutation
 ▪ Defective gene encoding aquaporin 2 – trapped in intracellular locations
 o Symptoms include polyuria & polydipsia
 ▪ Need this to remain hydrated otherwise potentially fatal
Summary Defence of Volume & Normal Osmolality

- Osmolality = no of osmoles/kg water (not influenced by temp)
- ECF [Na] ~ 140mmol/L:
 - Na & Cl most active & abundant solutes present
 - Cl just follows Na. Na is the most imp
 - Na = 85% ECF osmolality
- Obligatory Water Loss =
 - Minimum UO = 500ml/D
 - Need to excrete daily solute load od ~700mosmoles at max conc 1400mmol/L
 \(\leftarrow \) (Na 100-150, K 70-100, Cl 150, urea 400, creatinine 12 mmol)
- Conditions \(\Rightarrow \) ↓↓osmolality ie max ↓ADH secretion \(\Rightarrow \) dilute urine osmolality ~30mosmoles/kg & UO ~22L/day to secrete daily solute load 70msomoles
- Osmolality feedback mechanism:
 - ↑ osmolality (Small change 1-2% change from 280):
 - Ant HT sensing \(\Rightarrow \) ↑ADH \(\Rightarrow \) ↑AT2, ↑thirst, ↑aldosterone \(\Rightarrow \)
 - ↑Na & water reabsorb
 - afferent arteriole vasC \(\Rightarrow \) ↓GFR\(\Rightarrow \) restore ECF osmolality
 - ↓osmolality:
 - ↓ADH, ↑ANP (↑GFR) \(\Rightarrow \) ↑Na & water excretion
- max urine conc capable = 1400mmol/L
- Volume ECF is determined by
 - total osmotically active solute in ECF
 - Volume control mechanism –
 - mechanism overrides osmotic regulation of vasopressin secretion
 - sensors less sensitive ie >10% changes
 - effect:
 - ↑volume \(\Rightarrow \)
 - ↓vasopressin
 - ↑ANP (atrial) & ↑BNP (brain) \(\Rightarrow \) diuresis
 \(\leftrightarrow \) ↑Na excretion by kidneys
 - ↓volume \(\Rightarrow \)
 - ↑angiotensin II \(\Rightarrow \)
 - VC
 - ↑aldosterone
 - ↑thirst
 - ↓bp \(\Rightarrow \) ↓glom cap pressure \(\Rightarrow \) ↓GFR \(\Rightarrow \) ↓Na filtered
 - ↓mean intravascular pressure \(\Rightarrow \) ↑aldosterone \(\Rightarrow \) ↑Na reabsorbed
- in dehydration \(\Rightarrow \) moderate ↓ ECF by loss of water from intravascular & extracellular compartments
- disease states can cause marked loss of Na from ECF \(\Rightarrow \) shock:
 - stool - diarrhoea
 - urine – severe acidosis, adrenal insufficiency
 - sweat – heat+
Renin Angiotension System

Renin
- = acid protease (glycoprotein hormone)
- mw 37326
- secreted by kidney into bloodstream
- synthesised as preprorenin ⇒ prorenin ⇒ rennin
- active renin half life 80 mins
- kidney:
 - active renin secreted by specialized cells (granular cells) = JG cells
 - found in media of afferent arterioles as enter glomerulus
 - renin found in membrane lined secretory granules
 - cells also convert some prorenin to renin
 - only place to do this
 - secretes some prorenin – none converted systemically
- Renin also found in lacis cells
 - Found junction between afferent/efferent arterioles
 - Agranular
 - significance of renin here
- prorenin also made in other organs eg ovaries
 - after nephrectomy prorenin level normal BUT active renin zero

Note:
- Macula densa is close proximity to JG cells
- Juxtaglomerular apparatus =
 - Macula densa
 - Lacis cells
 - JG cells

Regulation of Renin Secretion
- Main regulatory mechanisms:
 - Factors ↑ renin secretion (and opposite of factors which ↓ renin release):
 - ↑ SNS outflow
 - ↑ circulating catecholamines
 - β_1_ receptors on JG cells ⇒ ↑ cAMP ⇒ ↑ renin release
 - any cause of ↑ post-ganglionic symp activity on kidney via renal nerves
Regulation of ECF

MOA of BBs on controlling volume status & bp
- Factors ↓renin secretion (opposite of above and…):
 - ↑Na & Cl reabsorb across macula densa
 - renin secretion inv∝ amount of Na & Cl entering distal tubule
 - enter mac densa via Na-K-2Cl transporter in apical membrane
 - ⇒ ↓renin secretion from adjacent JG cells
 → mediated by NO
 - ↑Na this is diff to TG Feedback (ie ↑Na ⇒ vasod of afferent arteriole)
 - Baroreflex ie ↑afferent arteriolar pressure:
 - ↑MAP at JG cells ⇒ ↓renin release
 → via ↓post ganglionic symp activity via renal nerves
 - AT II – direct action in JG cells ie -ve feedback loop

Secondary mechanisms:
- ↑renin release:
 - prostaglandins
 - ↑plasma K level
 - linked to Ks effect on delivery of Na & Cl to macula densa
- ↓renin release:
 - Vasopressin - ?direct or indirect effect
 - ↑ANP

Conditions which ↑renin secretion ie anything which ↓ECF, ↓MAP, ↑SNS
- Na depletion
- Diuretics
- ↓bp
- haemorrhage
- upright posture
- dehydration
- heart failure
- cirrhosis
- constriction of renal artery
- psych stimuli

Angiotensinogen
- synthesized in liver
- alpha glycoprotein (453 aa’s) (13% CHO)
- circulating level is ↑ed by:
 - glucocorticoids
 - thyroid hormones
 - oestrogens
 - cytokines
 - AT II

AT1
- Decapeptide (10aas)
- Splited from N-terimal of angiotensinogen by renin’s action
- Sole function is as a precursor of AT2

ACE
- ACE:
 - AT I to AT II
 - Inactivates bradykinin
- ↑ tissue bradykinin produced when ACE is inhibited
 ← this acts on B2 receptors ⇒ cough in 20% of people on ACEI
• most ACE found in endothelial cells
• Most converting in lungs but other parts of body contribute
• ACE exists in 2 forms:
 o Somatic – throughout body
 o Germinal – spermatogenic cells & spermatozoa
• Kidneys do not contain angiotensionogen & ACE
 \(\leftrightarrow \) AT2 can be fully produced in kidneys by itself
 \(\leftrightarrow \) kidneys influenced by blood borne & intrarenally produced AT2

AT2 & It's Metabolism
• octapeptide
• Half life 1-2mins
• Removed from circulation by:
 o Metabolised by various peptidases:
 ▪ angiotensinase (Aminopeptidase) – removes aspartic acid residue \(\Rightarrow \) AT III
 ▪ AT III can be converted to AT IV
 \(\leftrightarrow \) both AT III & AT IV have some activity; other peptide fragments inactive
 ▪ occurs in rbcs & many tissues
 o trapping system in vascular beds of non-lung tissue

Actions of AT’s
• AT1 – precursor of AT2 ie no action
• ATII – actions (via Go-linked receptors\(\rightarrow \) phospholipase C/IP3\(\rightarrow \) \(\uparrow \) Ca)
 o Arteriolar VC \(\Rightarrow \) \(\uparrow \) systolic & diastolic bp
 ▪ X4 more powerful vasoC than NA
 ▪ VasoC activity decreased in:
 • Hyponatraemic patients
 • Cirrhosis
 \(\leftrightarrow \) because \(\uparrow \) AT II found circulating \(\Rightarrow \) downregulate ATII receptors on smooth mm
 o \(\uparrow \) aldosterone – direct action on Z Glomerulosa of adrenal cortex
 o \(\downarrow \) renin release: -ve feedback control
 o blockade of NA re-uptake (uptake 1) \(\Rightarrow \) \(\uparrow \) active NA
 ▪ direct action on postganglionic symp neurons
 ▪ central effect on area postrema
 o \(\downarrow \) GFR – contraction of mesangial cells
 o arteriolar effects:
 ▪ [low concs] \(\Rightarrow \) selective afferent arteriolar constriction ie defend volume by \(\downarrow \)ing GFR
 ▪ [higher concs] \(\Rightarrow \) efferent constriction
 o \(\uparrow \) Na & HCO3 reabsorb –
 ▪ direct effect on PCT
 ▪ indirect by \(\downarrow \)interstitial hydrostatic pressure
 o \(\downarrow \) sensitivity of baroreflex \(\Rightarrow \) \(\uparrow \)pressor effect
 o activation of circumventricular organs on brain (not cross bbb)
 ▪ thirst
 ▪ \(\uparrow \)ADH release
 ▪ \(\uparrow \)ACTH release
 \(\leftrightarrow \) remember:
 o area postraema \(\Rightarrow \) VC
 o SFO & OVLT \(\Rightarrow \) polydipsia
 o ??organ \(\Rightarrow \) \(\uparrow \)vasopressin & \(\uparrow \)ACTH

• AT III – same actions as AT2 but:
 o VasoC – 40%
 o \(\uparrow \)aldosterone – 100% action ATII

Summary AT2 actions always results in:
• \(\downarrow \)RBF – afferent +/- efferent vasoC
• effect on GFR dependant on conc of AT2:
 o low: same or slightly ↓ed
 o high: ↓↓↓ (via mesangial & afferent arteriolar contraction)

Tissue Renin-Angiotensin Systems
• many tissues contain local indep renin-AT systems which generate ATII for local use
 - eg blood vessel walls, uterus, placenta, foetal membranes, eyes, heart, sex organs
• tissue renin contributes little/nothing to circulating renin pool
• local ATII role in:
 o growth factor in heart & blood vessels

AT II Receptors
• are 2 classes of ATII receptors:
 o AT$_1$
 o AT$_2$
 - ATII has stronger affinity for AT$_1$

AT$_1$ Receptors
• = 7 transmembrane domains
• found on chromosome 3
• couple by G protein to phospholipase C
• ATII ⇒ (on AT$_1$)
 o ↑free cytosolic Ca
 o activates numerous tyrosine kinases
 o in smooth mm: ↑caveolin-1
• regulation of AT$_1$ receptor depends on location:
 o in arterioles - ↑ATII ⇒ ↓AT$_1$ receptor predominance
 o in adrenal cortex - ↑ATII ⇒ ↑AT$_1$ receptor ⇒ ↑sensitivity of gland ⇒ ↑aldosterone release

AT$_2$ Receptors
• = 7 transmembrane domains
• found on chromosome X
• couple by G protein to various phosphatases
• AT II ⇒ (on AT$_2$)
 o Antagonise growth effects
 o Open K channels
 o ↑production of NO ⇒ ↑ing cGMP
 - overall effects unsure but more receptors found in fetal & neonatal life

Hormones of Heart & Other Natriuretic Factors

Structure
• atria & ventricles contain secretory granules
• granules ↑in number when
 o ↑NaCl intake
 o ↑ECF volume

Types
• from heart:
 o ANP – also found in other tissues
 o BNP – brain or beta NP
 - More present in heart (esp ventricles) than brain
 o CNP –
 - Found in brain, kidney, pituitary, vascular endothelial cells
• Very little in heart & circulation
 \(\rightarrow\): paracrine regulator

Actions

- **ANP & BNP act on kidney** \(\Rightarrow\) overall \(\uparrow\) in Na excretion
- **Done by:**
 - Dilation afferent arterioles \(\Rightarrow\) \(\uparrow\) GFR
 - Relax mesangial cells
 - Act on tubules \(\Rightarrow\) \(\downarrow\) Na reabsorb
 - \(\uparrow\) cap permeability \(\Rightarrow\) extravasation of fluid into ECF \(\Rightarrow\) \(\downarrow\) bp
 - \(\uparrow\) of arterioles & venules
 \(\leftarrow\) CNP greater VD effect on veins than ANP/BNP
 - \(\downarrow\) renin secretion
 - counteract pressor effects of catecholamines & ATII
- **ANP in brain:**
 \(\leftarrow\) BNP/CNP prob similar functions but unknown
 - General effects opposite to ATII
 - Found in neurons connecting hypothalamus to brainstem concerned with regulation of CV system
 \(\leftarrow\) ANP \(\Rightarrow\) \(\downarrow\) bp & excretion of Na

Receptors

- 3 natriuretic peptide receptors:
 - NPR A
 - Guanylyl cyclase cytoplasmic domain
 - ANP greatest affinity
 - NPR B
 - Guanylyl cyclase cytoplasmic domain
 - CNP greatest affinity
 - NPR C
 - Binds all peptides
 - Truncated Guanylyl cyclase cytoplasmic domain
 - ?function
- All span cell membrane

Secretion & Metabolism

- **ANP norm conc in plasma 5fmol/ml**
- **ANP**
 - half life short
 - metabolised by neutral endopeptidase (NEP)
 - \(\uparrow\) ANP secretion:
 - \(\uparrow\) ECF volume
 - atrial stretch
 \(\leftarrow\) also water immersion up to neck: removes gravity \(\Rightarrow\) \(\uparrow\) CVP \(\Rightarrow\) \(\uparrow\) atrial stretch
 - \(\downarrow\) ANP secretion:
 - lie to stand \(\Rightarrow\) \(\downarrow\) CVP
- **\(\uparrow\) BNP secretion:**
 - ventricle stretch
 \(\leftarrow\) ANP & BNP secretion \(\propto\) to degree of stretch

Na,K ATPase-Inhibiting Factor

- = another natriuretic factor
- It inhibits Na,K ATPase \(\Rightarrow\) \(\uparrow\) bp
- May be ouabain from adrenal glands
Defence of Specific Ionic Composition

- certain ions in ECF under close control:
 - Ca – parathyroids, calcitonin secreting cells
 - Mg – mechanism incompletely understood
- Control of Na & K also depend on:
 - H+ conc
 - pH
Endocrine Functions of Kidney

- **Hormones produced by kidney:**
 - 1,25 dihydroxycholecalciferol (active Vit D, aka calcitriol)
 - Erythropoietin
 - Prostaglandins

- **Hormones produced in circulation as result of enzymes released by kidney:**
 - Angiotensin-2 + aldosterone production, initiated by **renin** released by kidneys
 - Production of bradykinin in circulation, due to **kallikrein** from kidneys

- **Hormones which have site of action on kidney:**
 - ADH
 - Aldosterone
 - Calcitriol
 - PTH
 - ANP

Calcitriol

- **Creation of active form of vit D**
- **final step of activation**
 - 1-alpha hydroxylation occurs in cells of prox tubule
 - reaction ↑ed by:
 - catalysed by 1-alpha hydroxlase (mitochondrial enzyme)
 - ↑ed by PTH
 - ↑gonadal steroids
 - reaction ↓ed by:
 - ↓ s-calcium or phosphate
 - ↑ed calcitriol ie –ve feedback loop

- **function:**
 - ↑intestinal absorption of calcium & phosphate
 - ↑tubular reabsorption of Ca
 - ↑bone reabsorption of Ca & phosphate ie ↑serum Ca & PO4

EPO

- **EPO = circulating glycoprotein**
- **Half life 5 hours**
- **Takes 2-3 days for ↑ circulating rbcs**

Sources

- mRNA found in liver & kidney
 - →EPO also found in spleen & salivary glands but no mRNA ′. not made there
- source from:
 - 85% - interstitial cells in peritubular cap bed of kidney
 - 15% - perivenous hepatocytes in liver
 - (↔ in fetus main production is the liver ie not from kidney)
 - trace – brain- protective effect from hypoxia
 - trace – uterus & oviducts – ↑oestrogen ⇒ ↑EPO ⇒ oestrogen dependant angiogenesis

- **liver has little compensatory ability if kidneys removed ⇒ anaemia**
- recombinant EPO made and can be injected
 - o autologous transfusions for surgery
Regulation of Secretion

• ↑EPO:
 o hypoxia:
 ▪ main stimulus
 ▪ O2 sensor in kidney & liver
 • Heme protein:
 o Deoxy form ⇒ ↑EPO
 o Oxy form ⇒ inhibit transcription forming EPO mRNA
 o ↓rbc volume eg anaemia/haemorrhage
 o ↑androgens
 o alkalosis eg high altititude
 o catecholamines via β-adrenergic system
• ↓EPO:
 o ↑red cell volume eg transfusion/polycythaemia

Function

• EPO marrow effects:
 o committed stem cells ⇒ rbc precursors ⇒ mature erythrocytes
• EPO acts via membrane receptor =
 o Linear protein
 o Single transmembrane domain
 o Cytokine receptor family
 o Activates Tyrosine kinase ⇒ activates cytoplasmic transcription factors ⇒ nucleus ⇒ activate new m-RNA synthesis ⇒ inhibited apoptosis of red cells ⇒ ↑growth & development