Renal Function

Table of Contents

Kidney Anatomy ... 3
Renal Functions .. 3
Concentrations .. 3
Nephron .. 4
Blood Vessels ... 6
Lymph .. 6
Capsule ... 6
Innervation of Renal Vessel .. 6
Renal Circulation .. 8
Demand Supply Circulation ... 8
Pressure In Renal Vessels ... 8
Regulation of Renal Flow .. 8
Regional Blood Flow & O2 Consumption .. 11
Measurement of Total Renal Plasma Flow & Total Renal Blood Flow ... 11
Basic Renal Processes ... 13
GFR .. 13
Glomerular Filtration ... 13
Factors Effecting Starlings Forces .. 14
Summary Control of GFR ... 15
Filtration Fraction .. 16
Glomerular Filtrate & Permeability .. 16
Measuring GFR ... 17
Serum Creatinine & Urea Concentrations as indicators change in GFR ... 17
Functional Changes in GFR ... 18
Tubular Function .. 18
Cellular Transport by Location ... 20
Reabsorption By Substance ... 21
Reabsorption by Location ... 21
Na Reabsorption .. 21
Water Reabsorption ... 22
Chloride Reabsorption .. 22
Glucose Reabsorption ... 23
Urea Reabsorption .. 23
Protein Reabsorption .. 24
Tubular Secretion of Anions & Cations .. 24
PCT Secretion of Organic Anions .. 24
PCT Secretion of Organic Cations ... 24
Control of Fluid & Electrolyte Balance ... 25
Regulation of Na Excretion ... 25
Mechanisms .. 25
Control of Na reabsorption (: hence Excretion) .. 25
Regulation of K Excretion .. 27
<table>
<thead>
<tr>
<th>Renal Function</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects of Diuretics</td>
<td>35</td>
</tr>
<tr>
<td>Effects of Denervation</td>
<td>34</td>
</tr>
<tr>
<td>Loss of Concentrating & Diluting Ability</td>
<td>33</td>
</tr>
<tr>
<td>Abnormal Na Handling</td>
<td>32</td>
</tr>
<tr>
<td>Acidosis</td>
<td>31</td>
</tr>
<tr>
<td>Osmotic Diuresis</td>
<td>30</td>
</tr>
<tr>
<td>Role of Urea</td>
<td>29</td>
</tr>
<tr>
<td>Counter-Current Exchange of Vasa Recta</td>
<td>28</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>27</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>26</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>25</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>24</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>23</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>22</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>21</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>20</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>19</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>18</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>17</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>16</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>15</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>14</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>13</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>12</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>11</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>10</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>9</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>8</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>7</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>6</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>5</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>4</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>3</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>2</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>1</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
<tr>
<td>Free Water Clearance</td>
<td>0</td>
</tr>
<tr>
<td>Important Facts About Urine Concentration</td>
<td>0</td>
</tr>
</tbody>
</table>
Kidney Anatomy

- 150-200g each
- lie retroperitoneal just below diaphragm
- divided into:
 - cortex
 - medulla – inner & outer
 - pyramids
 - calyces
 - pelvis
 - ureter

Renal Functions

- water & electrolyte homeostasis:
 - 180L/d of plasma ultrafiltrate in renal corpuscles
 - filtrate passed along nephron
 - tubular reabsorption & excretion
 - 99% water reabsorbed \(\therefore \) ~1.5 L urine/d
 - tubular secretion contributes to excretion of substances from peri-tubular capillaries into nephron
 - final volume & composition = modulated to maintain norm body fluid & electrolyte balance by altering:
 - GFR
 - Tubular reabsorption
 - Tubular secretion
 - Integral in long term regulation of body H2O & electrolytes \(\therefore \) crucial to blood volume & MAP
- Excretion of wastes of metabolism:
 - Urea – protein
 - Creatinine - muscle
 - Urate – nucleic acids
 - Bilirubin – Hb
- Other:
 - Endocrine eg vit D, renin, EPO
 - Gluconeogenesis – in starvation kidneys produced glucose from aa’s
 - Acid-base balance – by varying urinary excretion of HCO3 & H
 - Excretion of chemicals eg drugs/foodstuffs

Concentrations

<table>
<thead>
<tr>
<th>Substance</th>
<th>Urine</th>
<th>Plasma</th>
<th>U/P Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Na</td>
<td>90</td>
<td>140</td>
<td>0.6</td>
</tr>
<tr>
<td>Urea</td>
<td>900</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Creat</td>
<td>150</td>
<td>1</td>
<td>150</td>
</tr>
</tbody>
</table>
Nephron

- = renal tubule & glomerulus
- = functional unit of kidney
- human kidney = 1.3 million nephrons
- total length 45-65 mm
- nephron consists of:
 - glomerular tuft & Bowmans Capsule – together = corpuscle
 - filtrate tubule
- different types of nephrons:
 - 85% = cortical or short loop nephrons:
 - short loop of Henle which lacks a thick ascending limb:
 - loop goes from cortex ⇒ outer medulla ⇒ cortex ⇒ distal tubule
 - 15% = juxtamedullary or long loop nephrons
 - their Bowmans Capsule is closer to outer medulla (ie slightly deeper than cortical nephrons)
 - loop of Henle passes deep into inner medullar before returning to distal tubule in cortex
 - ascending limb has thick & thin parts
- collecting ducts penetrate outer & inner medulla
- start to form renal pelvis in deep inner medulla

Bowmans Capsule

- made of:
 - Glomerulus – tuft of capillaries
 - Afferent arteriole – supplies Glomerulus
 - Efferent arteriole – drains Glomerulus
- 2 layers separate blood from glomerular filtrate:
 - Capillary endothelium –
 - Fenestrated 70-90 nm pore
 - Surrounded by
 - Stellate cells (mesangial cells) –
 - in between endothelium & basal lamina
 - function:
 - contractile – involved in regulation of GFR
 - secrete ECM
 - make renin
 - takeup immune complexes
 - glomerular BM =
 - basal lamina AND
By Adam Hollingworth

- **podocytes** – pseudopodia that interdigitate forming filtration slits 25nm wide

- **Specialised epithelium**
 - Function of glomerulus:
 - Permits free passage substance <4nm
 - Totally excludes >8nm
 - Total area of glomerular endothelium in human = 0.8m²

Prox Convoluted Tubule
- 15mm long
- 55um diameter
- wall of single cells with tight junctions
- luminal edge of cells have brush border

Loop of Henle
- descending & proximal part of ascending limb = thin permeable cells
- distal ascending limb = thick cells with many mitochondria
- cortical (short) nephrons = short loop of Henle
- juxtamedullary nephrons (long) = long loop of Henle extending in medullary pyramids

 - only ~15% all nephrons

Special Cells
- juxtaglomerular apparatus =
 - macula densa
 - juxtaglomerular cells

- macula densa:
 - end of ascending thick limb of loop of Henle where it lies adjacent to own glomerulus
 - =modified tubular epithelium at point where DCT touches both afferent & efferent arterioles
 - = chemoreceptors

- juxtaglomerular cells = epitheloid cells in media of afferent arterioles
 - located where afferent arterioles ⇒ enter glomeruli
 - have secretory granules containing renin
 - = intra-renal baroreceptors in afferent arteriole form juxtaglomerula apparatus

- lacis cells
 - = extraglomerular mesangial cells
 - found at junction between afferent & efferent arterioles
 - contain renin
 - contraction ⇒ ↓GFR

- type I medullary interstitial cells:
 - secretory function
 - secrete prostaglandins – PGE₂

Distal Convoluted Tubule
- 5mm long starts at macula densa
- no brush border

Collecting Ducts
- 20mm long
- pass through cortex, medulla ⇒ pelvis at apex of medullary pyramid
- epithelium made of:
 - principal cells (P)
 - most numerous
 - few organelles
 - Na reabsorption
 - intercalated (I) cells
 - also in distal tubule
 - more organelles
 - acid secretion & HCO₃⁻ transport
Blood Vessels

- afferent arterioles:
 - short straight branches of interlobular arteries
 - divides into multiple capillaries creating tuft in glomerulus
- efferent arterioles:
 - from capillaries in glomerulus
 - little smooth mm
 - each efferent arteriole from 1 glomerulus divides to supply many nephrons
 - cross over of blood – 1 tubule receives blood from many efferents
 - these then break up to form either
 - peritubular capillaries
 - from efferent arterioles in cortex (outer) nephrons
 - surround tubules
 - vasa recta
 - from efferent arterioles in juxtamedullary nephrons
 - loops dip into medullary pyramids with loops of Henle
 - descending –
 - nonfenestrated endothelium
 - facilitated transport for urea
 - ascending –
 - fenestrated
 - function to conserve solutes
 - vasa recta & peritubular capillaries then drain into interlobular veins
- glomerular capillaries only capillary which drains into arteriole
- total surface area of tubules = total surface of renal capillaries
 \[\sim 12 \text{m}^2 \]
- volume of blood in renal capillary at once = 30-40ml

Lymph

- abundant
- drains via thoracic duct into veins

Capsule

- capsule thin but tough
- capsule limits renal oedema \(\Rightarrow \)↑renal interstitial pressure \(\Rightarrow \)↓GFR \(\Rightarrow \) enhance & prolong anuria in ARF

Innervation of Renal Vessel

- postganglionic symp fibres
 - efferent – many
 - afferent – few
 - distribute to:
 - both arterioles
 - both tubules
 - juxtaglomerular cells
- NA innervation of thick ascending limb of loop of Henle
- cholinergic fibres via vagus ?function
- renorenal reflex:
 - renal afferent effecting contralateral kidney
o ↑ureteral pressure in one kidney ⇒ ↓efferent nerve activity contralateral kidney ⇒ ↑excretion Na & H2O
Renal Circulation

Demand Supply Circulation

• kidney weight = 300g
• @ rest kidneys receive:
 o 400ml blood/100g/min or 1200-1300ml/min
 o 25% CO (1.2-1.3L)
• target of blood flow:
 o 95% cortex (450ml/100g/min):
 o 5% to medulla:
 ▪ outer medulla = 20ml/100g/min
 ▪ inner medulla = ~3ml/100g/min
 o homeostatic & excretory functions require large flow
• basal VO2 =
 o 6mlO2/100g/min or 18mlO2/min (medulla is highest)
 o 7% of total body VO2
 o as metabolically v active
 ⇐ ∴ significant over supply but due to special supply & high metabolic activity

Pressure In Renal Vessels

• when mean arterial bp = 100mmHg,
• glomerular cap pressure ~45mmHg
• pressure drop across glomerulus 1-3mmHg
• pressure drops in efferent arterioles ⇒ pertitubular capillaries = 8mmHg
• renal vein ~4mmHg

Regulation of Renal Flow

\[\text{RBF} = \frac{\text{MAP} - \text{RVP}}{\text{RVR}} \]

(RVR = constriction of either the afferent or the efferent arteriole (or both) ⇒ ↑RVR)

⇐ as they are in series.

• 3 main systems controlling renal circulation
 1. autoregulation
 2. sympathetic control
 3. hormonal/humeral control

1. Autoregulation
autoregulation of renal blood flow between 70-175mmHg in dog
virtually absent <70mmHg & in diseased kidneys
autoreg of RBF & GFR can be overridden by (even if MAP in autoreg range):
 o SNS – large effect
 o RAA system – esp angiotensin 2 - large effect
 o Prostaglandins
 ⇐ have greater impact on RBF : GFR
autoreg present in denervated, isolated perfused kidney
 can be prevented by drugs which inhibits smooth mm contraction
achieved by:
 o pressure autoregulation –
 ▪ myogenic mechanism in afferent arterioles:
 ⇐ contract in response to stretch & vice versa
 ▪ maintains a constant renal blood flow
 o Tubuloglomerular feedback (TGF):
 ▪ Primarily involved in autoregulating constant GFR
 ⇐ does effect RBF but is a 2nd ary consequence
 ▪ TGF mechanism – macula densa in early distal tubule senses:
 • ↑GFR ⇌ ↑rate of flow of tubular fluid around nephron
 • macula densa sense ↑rate of delivery of Na/Cl (range 20-60mmol)
 • Na & Cl enter sensor cells via Na-K-2Cl contransporter in apical membranes
 • ↑in Na ⇒ ↑NaKATPase activity ⇒ ↑adeonsine formation from basal membrane of cells
 • ⇒ adenosine acts on A1 receptors on mac densa cells ⇒ ↑release of Ca to smooth
 mm of afferent arteriole ⇒ VC ⇒ afferent arteriole vasoC
 • ⇒↓RBF ⇒ ↓GFR of that nephron
 ▪ sensitivity of TGF mechanism is ↑ed with ↓ECF volume & vice versa
 ▪ loop diuretics block reabsorption of Na/Cl by macula densa ⇒ inhibition of TGF mechanism
2. Renal Sympathetic Nerves
 • from T10 – L1
 • some tonic discharge at rest
 • rate of discharge is ↑ed by:
 o hypotension: ↓baroreceptor firing ⇒ ↑SNS output ⇒ ↑VC in systemic vessels and renal vessels
 o exercise ⇒ ↓renal blood flow
 o central SNS stim
 • see mild ↓renal blood flow on rising from supine
graded stimulation of renal nerves:
 1st
 ▪ sensitivity of juxtaglomerular cells – to non neural stimuli. Result is ↑ed renin release
 ⇐ NB no effect on basal renin release (= a B1 effect)
 ▪ ↑renin secretion – direct effect on JG cells of B1 stim
 last
 ▪ ↑Na reabsorb – direct action of NA on renal tubular cells (a1 & b1)
 ⇐ PCT, DCT, ascending limb LOH = richly innervated by SNS
 o renal VC :
 ▪ by mostly a1 receptors, (some a2 effect)
 ▪ initially afferent arteriole
 ▪ greater stim ⇒ efferent constriction as well
 ▪ results in
 • ▪ GFR – see less drop in GFR than RBF due to efferent constriction
By Adam Hollingworth

Renal Function

- ↓ renal blood flow
 [NA also causes glomerular mesangial cell constriction ⇒ significant ↓ in GFR]

3. Hormonal/Endocrine Mechanisms

- Angiotensin 2:
 o Low concentrations:
 - Selective vaso afferent arteriole ⇒ ↓GFR ie defend volume
 - ↓ blood flow to medulla
 ← ie opposes PG’s
 o High conc:
 - Mechanism:
 • Also vaso efferent arteriole (in addition to afferent) ⇒ ↓RBF
 • Contraction mesangial cells ⇒ ↓ GFR

- Prostaglandins:
 o PGE2 & PGI2 cause (via GPCRs)
 - Selective afferent dilation
 - Stim of renin secretion – direct effect on JG cells
 - ↑ medullary blood flow
 - Inhibition of mesangial constrictor effects of:
 • AT-2
 • NA
 • ADH
 o Physiological role:
 - dampen renal vaso effects of SNS/ADH/AT2
 - prevent hypoxic renal damage during hypotension - would occur if SNS & AT2 effects unopposed
 ← ⋆: inhibition of PG synthesis combined with hypotension ⇒ profound ↓RBF & renal damage
 o produced in:
 - medullar interstitial cells
 - Collecting Duct cells
 - Arterioles
 - Macula densa cells
 o ↑PG synthesis stim by:
 - SNS
 - AT2
 - ADH
 - TGF

- ADH
 o In high concentrations ⇒
 - renal vaso ⇒ ↓RBF & ↓GFR
 - mesangial cell constriction ⇒ ↓GFR
 - stimulates release of PGs – opposing its actions acting as protection

- ANP – causes ↑↑GFR:
 o Afferent dilator
 o Efferent constrictor
Regional Blood Flow & O2 Consumption

- A/V O2 difference for whole kidney 14ml/L = extraction 8-10% available O2
 - brain 62, heart 114
- Renal VO2 primarily determined by Na reabsorption
- Kidneys very susceptible to ischaemic damage well before ↓ in total DO2:
 - Renal blood flow is autoreg primarily to maintain GFR & Na balance – NOT to meet renal metabolic demand
 - Renal metabolic rate has little autoreg influence over blood flow in peritubular capillaries
 - Countercurrent transfer of O2 in vasa recta causes ↓ in peritubular capillary PO2 as descend into medulla
 - medulla blood flow:
 - low compared to cortex (M= 20ml/100g/min : 450ml/100g/min C)
 - sluggish flow due to architecture of vasa recta
 - BUT is region of kidney with highest metabolic demand (Na reabsorption)
 - is region most susceptible to hypoxia
- Main function of renal cortex is filtration
 - high flow (450ml/g/min), little O2 use
 - (brain 50ml/100g/min)
- function Medulla to maintain osmotic gradient & reabsorb Na
 - low flow (20ml/100g/min), large amount O2 use
 - medulla vulnerable to hypoxia if flow reduced further
- NO, prostaglandins, cardiovascular peptides act in paracrine fashion to autoreg flow & O2 needs

Measurement of Total Renal Plasma Flow & Total Renal Blood Flow

- RPF is different to RBF
- Para- amino- hippurate (PAH) =
 - Organic anion
 - Almost completely cleared from plasma on single pass thru kidneys
 - Freely filtered & actively secreted
 - Extraction ratio ~90% when infused at low rate
 - higher rate ⇒ Tm exceeded & ratio falls
 - Clearance of PAH used to measure effective RPF
 - \[\text{Cl}_{\text{PAH}} = \frac{\text{U}_{\text{PAH}} \cdot \text{U}_0}{\text{P}_{\text{PAH}}} \]
- This is Fick Principle in disguise….

Fick: \[Q = \frac{\text{amount consumed (or produced)}/\text{time unit}}{\text{Difference in arterial – venous concentrations}} \]

So….

RPF = \[\frac{\text{amount of substance excreted}}{\text{time unit}} \]

Renal A – V differences

Assumed renal venous PAH = zero
• Effective RPF underestimates actual RPF by 10% (as only 90% PAH extracted)
 \[\therefore \text{actual RPF calculated by dividing effective RPF by 0.9} \]
• Normal RPF ~ 700ml/min
• RBF can then be calculated from actual RPF & HCT

\[
RBF = \frac{\text{RPF}}{1 - \text{HCT}}
\]

HCT = haematocrit ie conversion for conc of Hb in plasma
Basic Renal Processes

- Substances presented to the kidneys can undergo the following:
 - Glomerular filtration (GF)
 - Tubular reabsorption
 - Tubular secretion

Urinary excretion = [urine,] \times \text{ urine output} = \text{GF} + \text{tubular secretion} - \text{ tubular reabsorption}

GFR

- GFR healthy person av size = 125ml/min
- Values in women 10% lower after correction for s.a.
- Filtration = 180L/day; urine volume 1L/day
- >99% filtrate is reabsorbed

Glomerular Filtration

- Blood filters from glomerular capillaries \(\rightarrow \) Bowmans Capsule
- Amount filtered dictated by Starlings Forces
- Forces act across thin diffusion barrier consisting of:
 - Capillary endothelium fenestrae
 - Basement membrane
 - Slit diaphragms between podocytes (= capsular epithelial cells)
 - Mesangial cells (stellate cells)

\[
\text{GFR} = K_f \times \text{net filtration pressure}
\]

Where:
\[
K_f = \text{filtration coefficient} \quad \leftarrow \text{affected by contractile state of mesangial cells}
\]
\[
\text{NFP} = \left[(\text{GC}_{\text{HP}} - \text{BC}_{\text{HP}}) - \text{GC}_{\text{OP}} \right]
\]

- Filtration coefficient =
 - surface area \times membrane permeability
 - permeability:
 - of glomerular capillaries to water & solutes = \(v \) high (10-100x non renal values)
 - surface area:
 - can be altered by factors effecting of mesangial cells activity:
 - contraction of cells ie \(\downarrow \text{sa} \):
 - AT2
 - NA
 - ADH
 - TXA2
 - PAF
 - PGF2
 - Leukotrides
 - Histamine
 - Relaxation of cells ie \(\uparrow \text{sa} \):
By Adam Hollingworth

- ANP
- Dopamine
- PGE2
- C-AMP

- NET filtration pressure (NFP)
 - = balance of
 - capillary hydrostatic pressure moving fluid out of capillary
 - hydrostatic pressure in BC opposing movement of fluid out of capillary
 - oncotic pressure in GC
 - (oncotic pressure in BC not included as protein content of filtrate v low under physiological condition)

\[\text{NFP} = \left[(\text{GC}_{HP} - \text{BC}_{HP}) - \text{GC}_{OP} \right] \]

- NFP drops along glomerular capillaries because of:
 - no sig change in hydrostatic pressure as is low resistance system
 - ↑ing oncotic pressure – protein free fluid being filtered into BC leaving ↓ly high conc protein behind

- NFP values:
 - @ afferent end GC ~20mmHg
 - @ efferent end GC ~35mmHg
 - sufficient to produce GFR 180L/d (~125ml/min)
 - rise in oncotic pressure imp for water reabsorption later in nephron

- Diagram shows portions of glomerular capillaries don’t normally contribute to filtration
 - filtration exchange is flow limited (not diffusion ltd)

Factors Effecting Starlings Forces

1. Glomerular Capillary Hydrostatic Pressure (GC_{HP})
2. Bowmans capsule hydrostatic pressure (BC_{HP})
3. Glomerular Capillary Oncotic Pressure (GC_{OP})
Renal Function

• **Glomerular Capillary Hydrostatic Pressure** (GC\textsubscript{HP}):
 - Pressure ~60mmHg highr than other capillary beds because:
 - Afferent arterioles = short straight branches of interlobar arteries
 - Efferent arterioles have relatively high resistance
 - GC\textsubscript{HP} falls less along length of vessel (compared with systemic beds) due to high efferent tone
 - Tends to ↑ with ↑MAP – although is minimised by autoreg:
 - Pressure affected by relative resistance of afferent & efferent arterioles – eg:
 - vasoD afferent & vasoC efferent ⇒ ↑GCHP
 - caused by ANP
 - afferent vasoD alone ⇒ ↑GCHP
 - causes:
 - PGE2
 - PGI2
 - ANP
 - NO
 - vasoC afferent & vasoD efferent ⇒ ↓GCHP
 - both vasoC ⇒ maintain GCHP (despite ↓in RBF)
 - causes:
 - NA
 - SNS – NB also causes ↓K\textsubscript{f} (via mesangial constrictor) ⇒ ↓↓ GFR
 - AT2 (need high dose for afferent)
 - **Bowmans capsule hydrostatic pressure** (BC\textsubscript{HP}):
 - Any obstruction to urine flow ⇒ ↑ BC\textsubscript{HP} ⇒ ↓GFR
 - **Glomerular Capillary Oncotic Pressure** (GC\textsubscript{OP}):
 - ↓systemic protein ⇒ ↑GFR and vice versa
 - ↓ed RBF ⇒ filtration of fluid from reduced volume of plasma ⇒ ↑GC\textsubscript{OP} .∴ ⇒ ↓ed NFP
 - NFP & GFR ↓ along length of capillary in proportion to ↑ing GC\textsubscript{OP}

Summary Control of GFR

GFR = K\textsubscript{f} x [(GC\textsubscript{HP} – BC\textsubscript{HP}) - GC\textsubscript{OP}]

• **GC\textsubscript{HP}:**
 - Autoreg – pressure & tubuloglomerular feedback
 - SNS stim – 2nd to baroreceptor stim ⇒ afferent (>efferent) vasoC ⇒ ↓GFR & ↓Na filtered excreted
 - RAA system – AT2 – depends on conc of AT2: low ⇒ little change in GFR (vasoC afferent>efferent)
• **GC\textsubscript{OP}**
 - Dehydration ⇒ ↓plasma volume & ↑ conc protein ⇒ ↓GFR
 - ↑plasma volume ⇒ ↓conc protein ⇒ ↑GFR
 - haemorrhage:
 - NET movement protein out of vessels ⇒ ↓serum protein conc ⇒ ↑GFR (innapropriate)
 - overcome by ↑SNS ⇒ ↓NET GFR
• **K\textsubscript{f}**
 - Mesangial constriction (AT2, ADH, NA) ⇒ ↓GFR & ↓Na filtered & excreted
 - Mesangial dilation (dopamine, ANP, PGE2)
Filtration Fraction

- RPF ~ 600ml/min or RBF = 1250ml/min
- GFR ~ 125ml/min
- FF = fraction of flow which filtered off into tubule

\[
\text{filtration fraction} = \frac{\text{GFR}}{\text{renal blood flow}}
\]

- norm ~ 20%
- GFR varies less than plasma flow:
 - ↓bp ⇒ less GFR than expect due to efferent arteriole VC ⇒ ↑filtration fraction

Glomerular Filtrate & Permeability

- permeability of glomerular cap x50 that of skeletal mm caps
- filtrate contains:
 - water
 - electrolytes
 - glucose
 - amino acids
 - large molecules eg protein, rbcs not filtered
- <4 freely filtered
 - most drugs <1nm
- 4-8 = ↓ing filtration to zero at 8nm
 - between filtration inversionally \(\propto\) to diameter
 - except: -ve charged particles – see half amount filtered compared to neutral substance
 - because proteins in glomerular wall are -ve charge thus repel -ve particles

- Explains ↓ed filtration of albumin as is -ve charge
- Protein in urine norm comes from shedding of tubular cells (<100mg/day)
- Nephritis ⇒ dissipation of -ve charges in glomerular wall ⇒ albuminuria without ↑in size of filtration pores
Measuring GFR

- Requirements for suitable substance to measure GFR:
 - Freely filtered
 - Not reabsorbed or secreted
 - Not synthesized or broken down by tubules
 - Not stored in kidneys
 - Has no effect itself on filtration rate
 - Non-toxic, easy to measure or administer

- Inulin:
 - Polymer of fructose
 - Mw 5200
 - Meets above criteria but inconvenient as must be given by IV infusion until steady state reached
 - Then can take urine & plasma sample

- Creatinine:
 - More convenient, but less accurate
 - Formed from mm creatinine & released into blood stream at ~ constant rate
 - Problems:
 - Secreted into tubules in small amounts & +/- some reabsorption
 - ∴ creatinine clearance gives false high GFR:
 - small at normal GFRs
 - as GFR ↓s ⇒ the proportion secreted : filtered ↑s ⇒ ↑↑ing false high reading
 - Testing requires single blood sample & 24hr urine collection

- Urea clearance:
 - not useful as variable amount reabsorbed (40-60%)
 - called Clearance of X:

 \[
 \text{GFR (ml/min)} = \frac{U_x \cdot V}{P_x}
 \]

 \(U_x \) = concentration of X in urine
 \(V \) = urine flow / unit of time
 \(P_x \) = arterial plasma level of X

Serum Creatinine & Urea Concentrations as indicators change in GFR

- Plasma creatinine should be stable value: amount produced = amount excreted
- if ↓GFR:
 - initial ↓ creatinine filtering ⇒ +ve balance ⇒ ↑ serum creatinine
 - movement of equilibrium with higher serum creatinine
- Relationship of creatinine & GFR not linear:
 - inverse log relationship ie GFR needs to be half normal before ⇒ abnormal serum creatinine
- Serum urea = even less accurate than creatinine as GFR indicator cos:
 - normal range = wide
 - varies with protein intake
 - varies with changes tissue catabolism
 - urea absorbed to variable degree (ADH dependant)
Functional Changes in GFR

- Factors effecting GFR:
 - renal blood flow
 - changes in hydrostatic pressure – glom cap or Bowmans capsule
 - systemic bp
 - afferent or efferent constriction
 - ureteral obstruction
 - oedema of kidney in tight renal capsule
 - glom cap permeability
 - glom ultrafiltration coefficient
 - conc of plasma proteins ie oncotic pressures
 - effective filtration surface area

Tubular Function

General Intro

- tubules may:
 - tubular secretion – add to filtrate
 - tubular reabsorption
 - do both concurrently

- anatomy:
 - nephron = one cell thick
 - basement membrane separates cells from peritubular capillaries
 - tight junctions at luminal membrane between nephron cells

- hydrostatic pressure in peritubular capillaries < oncotic pressure ∴ NET reabsorption of fluid

- amount substance excreted/time = amount filtered + net amount transferred

- clearance of substance
 - = GFR if no Tx
 - >GFR if NET secretion
 - < GFR if NET reabsorption

Mechanisms of Tx

- 2 routes for reabsorption of fluid & solutes:
 - transcellular - across luminal & basolateral membranes of luminal cells
 - paracellular – between cells, across tight junctions

1. Transcellular methods

- primary active transport:
 - Na moved out of tubular cell across basolateral membrane ⇒ peritubular capillaries
 - Against electrochem gradient
 - Uses Na/K/ATPase
 - ∴ now low Na [intracellular] which creates gradient for Na to move into cell from the tubular lumen
 - the low Na [inside] created by Na/K/ATPase also used for reabsorption of glucose, aa, Cl, K, H2O via 2nd active transport. (see below)

- Simple diffusion:
 - Transcellular – obeying Ficks Law
 - (also see paracellular via tight junctions)

- Facilitated diffusion:
o = a substance crosses a membrane down its electrochemical gradient by binding with a carrier protein
o substance will display (as opposed to simple diffusion):
 ▪ specificity
 ▪ competition
 ▪ saturation
• secondary active transport:
o 2 substances move across membrane at same time using same protein carrier:
 ▪ 1 moves down its electrochem gradient ⇒ releasing energy
 ▪ energy used to move other substance against its gradient
e.g Na reabsorbed into cell from lumen down gradient creates energy to move e.g gluc, aa’s
o = cotransporter if 2 substances moving same direction
o = counter-transport if move in different directions
• endocytosis –
o mostly prox tubule
o reabsorbs small proteins & peptides via active process
o protein bind receptor ⇒ ATP ⇒ ADP

2. Paracellular Methods
• solvent drag:
o not controlled
o secondary to Na & water
o water by osmotic movement drags small solutes with it
• simple diffusion:
o through tight junctions
 (also transcellular)

Paracellular Leak
• tubular reabsorption & secretion (active processes) are both opposed by diffusion (passive) of substance being transported down its gradient via diffusion
 ↦ mostly at tight junctions (also transcellular small))
• ∴ magnitude of paracellular leak = one of determinents of max transport or gradient which can be established across tubules
• degree of leakiness depends on location & permeability of tight junctions:
o leaky =
 ▪ PCT
 ▪ Small intestine
 ▪ Gall bladder
o Tight =
 ▪ DCT
 ▪ CD
o allows passage of some water & electrolytes
• active transport systems have a max rate = transport max (Tm)
 ↦ rate ∝ to amount of substance up to Tm when saturation reached
 rate also
Cellular Transport by Location

Figure 57.3 Cellular transport model for the proximal tubule. The Na+/K+ ATPase transports Na⁺ from the interior of the cell across the basolateral membrane, creating a low intracellular Na⁺ concentration and a negative intracellular electrical potential, which causes Na⁺ to diffuse from the tubular lumen into the cell through the brush border. Glucose and amino acids are cotransported with Na⁺ through the brush border of the tubular epithelial cells, followed by facilitated diffusion through the basolateral membrane. Hydrogen ions are cotransported with Na⁺ from the interior of the cell across the brush border membrane and into the tubular lumen. Movement of Na⁺ into the cell down an electrochemical gradient established by the Na+/K⁺-ATPase on the basolateral membrane, provides the energy for transport.

Figure 57.4 Cellular transport model for the thick ascending limb of the loop of Henle. The Na⁺/K⁺/2Cl⁻ cotransporter in the luminal membrane transports these ions into the tubular cell using the potential energy provided by the Na⁺/K⁺-ATPase. Ca²⁺ is reabsorbed by all nephron segments through transepithelial and paracellular routes.

Figure 57.5 Cellular transport model for the distal convoluted tubule (DCT). The basolateral membrane Na⁺/K⁺-ATPase maintains a low intracellular Na⁺ concentration. Na⁺ is absorbed from the lumen through a luminal membrane Na⁺/Cl⁻ cotransporter. Active Ca²⁺ reabsorption occurs in this segment.

Figure 57.6 Cellular transport model for the cortical collecting tubule. The Na⁺/K⁺-ATPase maintains a high intracellular K⁺ and low intracellular Na⁺, favoring their passive diffusion across the luminal membrane through specific channels.
By Adam Hollingworth

Reabsorption By Substance

Reabsorption by Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Na</th>
<th>H2O</th>
<th>Cl</th>
<th>Urea</th>
<th>Gluc</th>
<th>K</th>
<th>HCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT</td>
<td>65</td>
<td>65</td>
<td>As Na</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>LH</td>
<td>25</td>
<td>15-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCT</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>5</td>
<td>↑↓15</td>
<td>10</td>
<td>0-15</td>
<td>0-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Na Reabsorption

- Na transport coupled to H+, gluc, amino acids, organic acids, phosphate across tubule walls
- Na reabsorbed by cotransport in:
 o Prox tubule
 o Thick ascending loop Henle
 o Distal tubules
 o Collecting ducts

\[\text{Na actively reabsorbed from all parts of renal tubule except thin portion of Loop of Henle}\]

- Na moves by cotransport or exchange in tubular lumen ⇒ tubular epithelial cells
- Then actively pumped into interstitial space by Na,K,ATPase in basolateral membrane

\[\text{3Na out, 2K in}\]

- Most of Na actively transported into lateral intercellular spaces
 \[\text{space between tubular cells tight junctions}\]
- Amount of Na reabsorption by location (& diuretic targets):
 o 65% prox tubule (Na-H exchange) (carbonic anhydrase inhibitors)
 \[\text{also Na-glucose & Na-amino acid co-transporters}\]
 o 25% thick ascending loop (Na-2Cl-K cotransporter) (loops)
 o 5% distal convoluted tubute (Na-Cl cotransporter) (thiazides)
 o 4-5% collecting ducts (ENaC channel) (spironlactone)

\[\text{this portion regulated by aldosterone}\]
Glomerulotubular balance: (Nb diff to Tubulo-glomerular feedback)

- intrarenal mechanism
- an ↑GFR ⇒ ↑reabsorption of solutes & also water in mostly prox tubule
 \[\leftarrow: \text{PCT reabsorbs a constant } \% \text{ Na filtered (but amount changes)}\]
- imp for Na as fine tuning in NET movement of Na happens in seconds after change in GFR
- sensor mechanism thought:
 - oncotic pressure in peritubular capillaries:
 - high GFR ⇒ high oncotic pressure of blood leaving in efferent arterioles ⇒ ↑reabsorption of Na in tubules
 - can be overridden by extra renal influences eg haemorrhage & saline infusions

Water Reabsorption

- 180L fluid filtered through glom/day
- urine volume 1L/day
- water reabsorb =
 - PT 65%
 - Descending limb LH 15-25%
 - DT 0%
 - CD 15% (depends on ADh levels)
- Reabsorption occurs by
 - diffusion through cell membranes & tight junctions
 - osmosis predominant method – reabsorption of Na (& other solutes) ⇒ ↓osmotic P of luminal fluid
- ascending loop of Henle = impermeable to water ⇒ delivers dilutes tubular fluid to DCT/CD
- facts:
 - at least 87% of filtered water reabsorbed
 - reabsorption of rest of filtered water can be varied without affecting total solute excretion
 \[\leftarrow: \text{urine concentrated: water retained in excess of solute}\]
 \[\text{urine dilute: water lost in excess of solute}\]

Aquaporins

- =water channels ⇒ rapid diffusion of water across cell membrane
- 13 aquaporins found (1,2,3,4 impnt in kidney)

Water in Proximal Tubule

- aquaporin 1 found on basolateral & apical membrane of prox tubules
- allows water movement out of tubule along osmotic gradients ⇒ maintenance of isotonicity
- 60-70% of filtered solute & water removed by end of prox tubule
- without aquaporin 1 response to dehydration would be ineffective

Water in Collecting Duct

- aquaporin 2 found in collecting ducts
- ADH/vasopressin causes insertion aquaporin channels into membranes ⇒ water reasorption

Chloride Reabsorption

- Occurs transcellular & paracellular
- Movement
 - mostly coupled to Na reabsorption
 - exception is in CD type B intercalated cells:
 - Cl reabsorption indep of Na/K/ATPase
 - Cl counter-transport with HCO3 ions produced from intracellular carbonic acid
 \[\leftarrow: \text{dependant on basolateral membrane H-ATPase pump}\]
Glucose Reabsorption

- All glucose reabsorbed in PCT by cotransport with Na
- Early portion of prox tubule reabsorbs:
 - Glucose
 - Amino acids
 - HCO3
- Later prox tubule – Na reabsorbed with Cl
- Glucose is removed from filtrate (urine) by 2nd active transport with Na
- Gluc filtered at 100mg/min and virtually all should be reabsorbed
- Amount reabsorbed ∝ to amount filtered (ie plasma gluc level P_G) upto TmG (Tm glucose)
 \[\Leftarrow \text{: once } > \text{TmG } \Rightarrow \uparrow \text{ing glucose in urine} \]

- Humans with norm GFR ie 125ml/min
- TmG
 - in women = 300mg/min
 - in men = 375mg/min
 - average >15mmol/L = complete saturation @125ml/min
 - \[\text{15mmol/L x 125ml/min } = 1.88\text{mmol/min} \]

- Glucose actually start appearing in urine (ie before transport saturation):
 - 200mg/dL (10-12mmol/L) = s-glucose
 - cos not all tubules identical working optimally to TmG
 - deviation from ideal = splay
 - splay is inversely ∝ avidity of transport mechanism to bind glucose

Glucose Transporter Mechanism

- Gluc reabsorption same as mechanism in intestines
- Gluc & Na bind to Na dependant gluc transporter (SGLT) 2
 - present in apical membrane
- Na moves down elec/chem. Gradient & gluc follows into cell
- Na then pumped out of cell into interstitium
- Gluc via GLUT 2 transports it into interstitium
- Rate of transport of gluc d isomer much higher than l isomer
 - as SGLT 2 binds d isomer specifically

Urea Reabsorption

- Areas of reabsorption:
 - PCT ~50% of filtered urea by passive diffusion
 - linked to water reabsorption
 - Inner medullary CDs: 10% urea reabsorbed
 - ADH ↑s permeability of urea
 - LOH, DCT, cortical CDs are impermeable to urea
Protein Reabsorption
- Only small amount of protein filtered through glomerular
- Albumin in filtrate 10mg/L
- Most albumin reabsorbed by tubules & norm urinary protein ~100mg/day
- Method of reabsorption = endocytosis at tubular luminal membrane
 - Large protein molecules ⇒ lysosomes ⇒ broken down to aa’s ⇒ diffuse into peritubular capillaries
- TM also exists for protein ⇒ exceeded ⇒ large proteinuria

Tubular Secretion of Anions & Cations

PCT Secretion of Organic Anions
- Secretes organic anions into lumen by an active carrier
- Substances secreted this way:
 - Organic anions:
 - Uric acid –
 - also filtered at glomerulus & reabsorbed by tubule BUT secretory mechanisms is impt in regulation of plasma concentration
 - Bile salts
 - FA’s
 - Prostaglandins
 - Drugs & exogenous chemicals:
 - Para-aminohippuric acid (PAH)
 - Penicillin
 - Probenecid
 - Aspirin – highly plasma protein bound. Secretion vital for clearance from plasma

PCT Secretion of Organic Cations
- Also actively secretes organic cations eg:
 - Creatinine
 - Ach
 - Catecholamines
 - Histamine
- Eg drugs secreted this way:
 - Pethidine
 - Morphine
 - atropine
Control of Fluid & Electrolyte Balance

- control of Na & water excretion
- Na is main determinant ⇒ ECF volume ⇒ plasma volume

Regulation of Na Excretion

- Na filtered in large amounts
- Actively reabsorbed out of all portions of tubule except descending loop of H
- 96-99% filtered Na norm reabsorb
- amount of Na in body is prime determinant of ECF volume
- regulatory mechanisms exist to adjust Na excretion to amount ingested:
 - 1mEq/d low salt diet
 - 400mEq/d high salt diet

Mechanisms

Na excretion = Na filtered - Na reabsorbed
= (GFR x s-[Na]) - Na reabsorbed

- Na excretion depends on control both:
 - GFR
 - Na reabsorption
- In terms of long term Na excretion; Na reabsorbed is more imp than GFR because:
 - GFR autoregulated
 - Glomerulotubular balance:
 - Changes Na reabsorption in response to primary change GFR
 - ie ~ 65% constant
 - intrarenal process
 - blunts changes in Na excretion caused by minor GFR changes
 - don’t confuse with TGF

Control of Na reabsorption (∴ hence Excretion)

1. GTB
2. Aldosterone
3. SNS – direct
4. AT2
5. ANP
6. ADH
7. Intrarenal physical factors
8. Pressure naturessis & diuretics
9. Misc

1. Glomerulotubular Balance (GTB)
 - see prev section on GTB
2. Aldosterone
 - from adrenal cortex zona glomerulosa
 - = most imp controller of Na reasoroption
 - acts on
 - principal cells in cortical CDs (most imp)
 - late DCT
• causes:
 o ↑activity of basolateral NaKATPase ⇒
 ▪ ↑K in cell ⇒ ↑driving gradient for K out of cell into renal tubule
 ← NB K excretion is a function of renal tubular flow (↑flow maintains gradient for
 excretion of K into tubular fluid
 ▪ ↓Na in cell ⇒ ↑driving gradient for Na reabsorption from tubular fluid through ENaC on
 apical membrane
 • works to fine tune remaining 2% of Na which hasn’t already been reabsorbed
 ← last 500mmol if ~26000mmol filtered
 • aldosterone ⇒
 o renal effects:
 ▪ ↑Na reabsorption with ↑K & ↑H secretion
 ▪ ↑Na reabsorp with Cl
 o extra renal:
 ▪ ↑reabsorption from sweat glands, salivary ducts, intestinal mucosa
 ▪ K movement into cells (with adren & insulin) - ↑s activity f 3Na/2K/ATPase
• Control of aldosterone secretion:
 o ↑ed secretion:
 ▪ AT2 – via RAA (most impt)
 ▪ ACTH – high conc = direct effect; low conc = permissive effect
 ▪ ↑Serum K = direct stim effect on Z glomerulosa
 ▪ (↓serum Na – reverse of below)
 o ↓ed secretion:
 ▪ ↑Serum Na = direct inhibition of Z glomerulasa
 ← = minor role; more impt is plasma volume via RAA system
 ▪ dopamine
 ▪ ANP
• hormones take 10-30 mins to act
 ← time for steroids to alter protein synthesis via action on DNA
3. SNS activity
• direct effect via α-1 ⇒
 o ↑reabsorption
 o effect predominant in PCT but also ascending LOH & DCT
4. AT2
• direct effect mainly on PCT
• indirect via:
 o aldosterone ⇒ ↑peritubular cap oncotic pressure
 o efferent art vaso C (high conc) ⇒ ↑FF
 ← indirect methods work via RIHP (see next)
5. ANP
• 28 aa peptide hormone
• from atrial mm in response to stretch
• effects of ANP:
 o intra-renal:
 ▪ mesangial relaxation ⇒ ↑GFR
 ▪ afferent a vasoD & efferent vasoC ↓: ↑FF ie defend GFR
 ▪ direct effect on medullary CD ⇒ ↑excretion
 o extra renal:
 ▪ vasoD or resistance & capacitance vessels
 ▪ ↓response of vaso smooth mm to vasoConstrictors
 ▪ ↓response of Z Glomerulosa to stim for aldosterone release
 ▪ ↓ADH secretion
6. ADH
 • effects:
 o ↑ H2O permeability in CDs
 o direct effect on principal cells to ↑Na reabsorb
 ← synergistic effect enhanced in presence of aldosterone

7. Intrarenal Physical Factors
 • ↑Renal interstitial hydrostatic pressure (RIHP) ⇒ ↓Na reabsorp & vice versa
 • RIHP =
 o Directly proportional to hydrostatic pressure
 o Inv prop to oncotic pressure peritubular capillaries
 o Eg:
 ▪ Volume depletion ⇒ ↓peritubular cap hydro static pressure (↓MAP & reflex ↑SNS renal vasoC) ⇒ ↑Na reabsorb (by ↓ing RIHP)
 ▪ Dehydration without loss protein ⇒ ↑plasma oncotic pressure ⇒ ↓RIHP ⇒ ↑Na reabsop (& ↓GFR)
 ▪ Efferent a vasoC ⇒ ↑GFR & ↑FF. An ↑FF ⇒ ↑oncotic P in peritubular capillaries due to ↑ed proportion of protein free portion plasma filtered ⇒ ↓RIHP
 ← ie ↑peritubular oncotic P can occur even if systemic oncotic pressure normal

8. Pressure Natriuresis & Diuresis
 • = most impt controller of blood volume
 • has infinite gain
 • can control MAP & blood volume precisely back to norm
 • ↑MAP ⇒ ↑Na excretion (ie ↓ed reabsorption) due to:
 o intra-renal:
 ▪ ↑GFR due to ↑GC_Hp (minor effect)
 ▪ ↑renal art pressure ⇒ ↑peritub cap hydrostatic P ↑RIHP ⇒ ↓Na reabsorb
 o extrarenal ie inhibition of SNS outflow to kidney (baroreflex)
 ▪ ↓RAA
 ▪ ↑ANP secretion in atrium (Bainbridge reflex)
 ▪ ↓ADH secretion (baroreflex & ↓AT2)

Misc
 • Other causes ↑Na reabsorb:
 o Cortisol
 o Oestrogen
 o GH
 o Thyroid hormone
 o Insulin
 • Other cause ↓Na reabsorb:
 o Glucagon
 o Progesterone
 o PTH
 o Renal vasoldilators:
 ▪ PGs
 ▪ kinins

Regulation of K Excretion
 • total body K ~60mmol/L /kg
 • location:
 o 90% ICF
 o 8% bone
 o 2% CF
• 100mmol ingested/day in diet
• excretion:
 o 10mmol out in faeces
 o 90mmol in renal
• K freely filtered & 85-90% reabsorbed under normal circumstances
 \(\Rightarrow\) remainder = excreted
• certain conditions can cause reabsorption or NET secretion
• K handling /location:
 o PCT: (~50% reabsorbed)
 ▪ reabsorbed by **paracellular diffusion**
 ▪ movement driven by:
 • concentration gradient created by water reabsorption
 • lumen +ve potential across late PCT
 • solvent drag (small amount)
 ▪ also secretes K (with descending limb LOH):
 • straight portion of PCT
 • interstitial K comes from passive reabsorption from medullary CDs
 \(\leftarrow\) : K recycled – similar to urea
 o LOH (40% reabsorb):
 ▪ (some secretion in descending as mentioned above)
 ▪ thick ascending limb:
 • passive reabsorb – paracellular 2\(^{nd}\) to lumen +ve potential
 • active reabsorb va Na/K/2Cl co transporter
 ▪ : thick ascending LOH reabsorb 40% filtered (+ whatever secreted into PCT & descending limb)
 \(\leftarrow\) : 10% of filtered left to \(\Rightarrow\) DCT
 o DCT – very little action on K
 o Cortical CDs (CCD)
 ▪ = site of control of overall K excretion
 ▪ differences of NET K movement over physiological range due to movement of K in CCDs
 ▪ cells involved:
 • principal cells actively secrete K into tubule – under aldosterone control
 • intercalated cells type A (less numerous) – actively reabsorb
 \(\leftarrow\) : norm K level = NET secretion. If ↓s-K = NET reabsorb with cessation of secretion
 ▪ movement of K in CCD can be altered by K movement in more prox nephron with use of diuretics

Control of K secretion by CCDs
1. serum K conc
2. aldosterone
3. Tubular fluid flow rate & diuretics
4. Acid base changes
• serum K conc:
 o ↑s-K \(\Rightarrow\) ↑ed uptake by basolat Na/K/ATPase (from interstitium) \(\Rightarrow\) ↑intracellular K \(\Rightarrow\) ↑ed gradient for K secretion into tubule
• aldosterone:
 o effects of aldosterone:
 ▪ ↑ K secretion by Principle cells
 ▪ ↑number of basolat Na/K/ATPase pumps & ↑no open K (and Na) channels in lum
 ▪ removed by active reabsorption in prox tubules
 ▪ secreted into fluid by distal tubules
 o aldosterone influenced by RAA system & direct serum k conc
 \(\leftarrow\) RAA exhibits greater control of aldosterone system than s-K
Renal Function

By Adam Hollingworth

.serum Na more impt than serum K

- changes in aldosterone secretion due to Na changes can regulate Na with no effect on K cos:
 - amount of K secretion in CCD influenced by rate fluid delivery to these ducts
 - K secretion occurs by passive movement out along gradient into lumen
 - ↓ secretion enhanced by large volume as maintain low lumen conc

- ↓ secretion when flow through CCD low
eg hypovolaemia = high aldosterone but NET K secretion = normal

- tubular fluid flow rate
 - described above with aldosterone
 - diuretics acting on PCT, LOH, DCT ⇒
 - ↑ K secretion
 - 2 mechanisms:
 - inhibition of K reabsorb
 - ↑ flow through CCD by inhibiting reabsorption Na in more prox nephron
 - explains why diuretics in pt with 2nd hyperaldosteronism (congestive heart failure)
 ⇒ ↓↓↓ serum K
 ⇒ aldosterone & ↑ ed fluid through CCDs

- (NB water diuresis with ↓ ADH is not accompanied by ↑ K excretion:
 - ADH direct stim K secretion (luminal channels in P cells)
 ⇒ ↓↑↓ K out via ↑ secretion and ↑ flow thr CCD = norm K excretion)

- Acid base changes
 - Resp & met alkalosis = ↑ secretion K:
 - K movement into cell during alkalosis in exchange for H ⇒ ↑ intracellular K in P cells of CCD ⇒ ↑ ed gradient for excretion
 - Acute resp acidosis (& some met acidosis) = intial ↓ K excretion per same mechanism for alkalosis
 - BUT chronic acidosis ⇒ ↑ ed K secretion by unknown mechanism

Regulation of Water Excretion

- Av adult ingests ~ 2.5L water/day
 - 1.2 litre fluid
 - 1litre food
 - ~350ml metabolic water

- loses:
 - ~900ml insensible – skin & lung
 - ~100ml faeces
 - ~50ml sweat

- kidney need to excrete 1.5litres

- every day body needs to get rid ~700msom wastes (electrolytes, urea, waste):
 - min daily obligatory UO = ~500ml/day @ max conc of 1400mmol/L

- ~180L water filtered/day
- norm 99.4% reabsorb ⇒ ~litre to be excreted
- effect of ADH (on solute load of ~700mosm/day):
 - max = ↑99.7% reabsorb ⇒ 500ml excrete (urine osmolality ~1400mosm/L)
 - no ADH = ~87% reabsorb ⇒ 24L excretion (urine osmolality ~30mosm/L)

- water diuresis after large intake water starts @ 15min, peak at 40min
- water reabsorb mechanism:
By Adam Hollingworth

Renal Function

- Diff in osmolality lumen : interstitial fluid. This created by reabsorption solutes (Na, Cl, glucose, aa)
- Solute reabsorb actively ⇒ ↓luminal osmolality & ↑interstitial osmolality ⇒ gradient to drive water reabsorb across cells +/- tight junctions
- Permeability of cells & tight junctions vary along nephron 2nd to physiological control

Locations of Water Reabsorption

- PCT = 65%
- LOH = 10-15%
- DCT = none
- CD = highly variable

PCT
- 65% filtered Na & water here
- Water permeability large
- Passive water movement following Na
- Osmolality (& Na conc) of PCT fluid remain ~ same plasma
- Osmotic diuresis ⇒
 - Norm process = active reabsorb Na ⇒ ↓osmolality of tubule fluid ⇒ ↑water reabsorb
 - But osmotic diuretic not able to be reabsorbed . ⇒ see ↑in its conc in tubule
 - ∴ Oncotic load in tubule ⇒ ↓water reabsorb ⇒ ↓ing Na conc in tubule fluid below that of plasma
 - ↓ing Na conc in tubule fluid ⇒ gradient favouring flow of Na back into tubule fluid (passive paracellular diffusion)
 - In contrast to active transcellular Na reabsorb
 - ∴ NET movement of Na out of tubule fluid is ↓ed
- Total effect is excretion large quantity of NaCl & even more quantity of water

LOH
- 25% filtered Nacl reabsorb
- 10-15% water reabsorb
- Descending = reabsorb water NOT NaCl
- Ascending = reabsorb NaCl NOT water
- Delivers hypotonic fluid to DCT
- Tubular fluid osmolality and conc of Na & Cl = < plasma
- But difference is less for osmolality due to addition of urea to tubule fluid

DCT
- Hypotonic fluid enters containing % filtered:
 - 10% NaCl
 - 20% filtered water
- Impermeable to water
- Further reabsorp of Na occurs ⇒ ↑ing hypotonicity of fluid

Collecting Ducts
- Permeability subjected to physiological control ie low to very high depending on ADH
- If permeability is high ie high ADH:
 - CDs reabsorb so much water that luminal fluid equilibrates with plasma capillaries (~300mosm/L)
 - Post equilibration CDs behave similar to PCT ie reabsorb equal solute & water
 - Cortical CDs reabsorb > water than medullary CDs
- Helps to preserve high medullary interstitial fluid osmolality
- Vasa recta carry water away
- If permeability is low:
Water Intoxication

- 16ml/min max urine flow in water diuresis
- intake of water > this for prolonged time ⇒ swelling of cells by uptake of water from hypotonic ECF severe
- in extreme swelling of brain ⇒ convulsions ⇒ coma
- also see water intoxication:
 - no ↓ water intake after exogenous vasopressin
 - endogenous vasopressin secretion to non osmotic stim eg surgery (SIADH)

Loop Of Henle

Main Role LOH

- creating high interstitial osmolality in medulla
 (also inner medullary CD – urea diffusing out)
- high interstitial osmolality essential for concentrated urine if needed:
 - initial filtrate = same osmolality as plasma = 300mosmol/kg
 - max urine osmolality = 1400mosmol/kg
- in presence of ADH ⇒ ↑ water reabsorption via CDs due to high medullary interstitial osmolality

Thin Descending Limb

- 15% filtered water removed in descending limb
 ↩️ 20% filtered water remains and is presented to distal tubule
- descending limb of loop is permeable to water (aquaporin 1)

Ascending Limb LOH

- whole ascending limb impermeable to water
- thin ascending:
 - Na & Cl move out by passive diffusion – equilibrate with interstitium
- Thick ascending:
 - Na, Cl, K actively reabsorbed from tubular fluid by Na-K-2Cl cotransporter
 - called diluting segment – ↑ed conc of water : to solute in tubular fluid
 - Removal of Na, Cl, K from tubular fluid and redistribution into interstitium ⇒ ↑gradient for movement of water out of permeable descending limb into hypertonic interstitium
 - ⇒ hypertonic descending limb
 - Na-K-2Cl contransporter = prime cause for high interstitial osmolality
 (aided by diffusion of urea from inner medullary CDs)
 - Na also move by paracellular diffusion
 - Down electrochem gradient
 - sig reabsorption seen due to:
 - +ve elc potential in lumen
 - high Na paracellular permeability
- ️ @top of ascending limb tubular fluid now hypotonic to plasma
Distal Tubule
- relatively impermeable to water
- continued removal of solute > water ⇒ further dilution and hypotonicity

Collecting Ducts
- ducts have 2 portions:
 - cortical portion
 - medullary portion
- change in volume & osmolality in ducts depends on vasopressin ⇒ ↑permeability
- aquaporin 2 – stored in vesicles in cytoplasm of principal cells
- vasopressin acts on Vasopressin V2 receptor (cAMP, protein kinase A) ⇒ rapid insertion of vesicles into apical membranes of cells:
 - water move out of hypotonic tubular fluid into
 - cortical collecting ducts (10% filtered water) ⇒
 - medullary collecting ducts (5% filtered water)
- without vasopressin:
 - collecting duct mostly impermeable to water
 - about 2% filtered water can be reabsorbed without
 - tubular fluid remains hypotonic ⇒ large amount fluid into renal pevis
- with vasopressin max urine osmolality = 1400 ie x 5 that of plasma (99.7% of water reabsorb)
- without vasopressin max 13% filtered water excreted with UO 15ml/min

Channels:
- Na-K-2Cl into cell via 2nd active transport
- NaK ATPase into interstitium
- Cl into interstitium – needs Barttin protein in cell membrane
- K in and out via ROMK and other K channels
Medullary Interstitial Fluid Osmolality

Step 1 (B):
- Active transport of NaCl from thick ascending ⇒ interstitium ⇒
 - ↑osmolality interstitium
 - Diluting fluid in tubular lumen
- ↑ed interstitial osmolality cause:
 - Water move out of descending limb ⇒ osmotic equilibrium between interstitium & lumen
 - Descending limb = eg 400
- NB Water reabsorption in descending limb is linked to NaCl reabsorption in ascending limb but they are separate processes ie if no flow or snapshot then I & DL = 400, AL = 200

Step 2 (C) = flow start
- Isoosmotic filtrate delivered to start of descending limb
- Tubular fluid becomes concentrated along descending limb and moves around hairpin into ascending limb

Step (D) = stop flow
- NaCl pumped out of ascending limb
 - More NaCl pumped out at bottom due to higher conc than at top of limb

Step E⇒H = repetition
- See ↑ing concentrations of interstitium & tubular fluid @inner medulla (bottom of LOH) due to:
 - ↑ing gradient of conc from cortex ⇒ inner medulla
 - Process of B ⇒ D repeated
 - Water leaves upper descending limb to dilute interstitium but as fluid gets more conc descending down, less water water leaves tubular fluid
- At some point interstitium reach its max osmolality:
 - This defined by level at which NaCl with diffuse back (paracellular) into ascending limb
CounterCurrent Multiplier Mechanism Summary

• = mechanism where concentration effect in the medullary interstitium is multiplied by counter-current flow of tubular fluid within 2 limbs of the LOH
 ⟷ only occurs in juxtamedullary nephrons

• gradient:
 o produced by loops of Henle as countercurrent multipliers
 o maintained by vasa recta – countercurrent exchangers

• loop of H multiplier depends on:
 o Thick ALH:
 ▪ impermeable to water BUT relative permeable to NaCl
 ▪ active transport of Na & Cl out of lumen into cell
 ▪ limiting factor for osmolality across epithelium (~200mosm/kg) = passive paracellular back flux into lumen of Na
 o thin ALH:
 ▪ also reabsorbs Na & Cl
 ▪ done by ion movement (not active transport) – may involve urea
 o DLH:
 ▪ Driving force for movement of water out of DLH is NaCl reabsorption in ALH
 ▪ Interstitium & DLH equilibrate osmolality due to high permeability of water
 ⟷ ALH continues to reabsorb NaCl ↓. ⇒ ~200 lower osmolality than corresponding DLH/Interstitium
 ▪ Tubular fluid is concentrated as moves down DLH due to water diffusion out tubule
 ▪ Interstitium relatively becomes ↑conc as move down as less water to move out of tubule
 o Thin ALH:
 ▪ NaCl start to passes out of tube along conc gradient
 ▪ NET movement of NaCl decreases as rise up ALH ie as conc gradient decreases along diluting segment
 o Osmolality:
 ▪ Max interstitial osmolality @hairpin (inner medulla) = 1400mosm/kg
 ▪ Min @start of DCT - ~100mosm/kg = hypo-osmotic
 o Gradient:
 ▪ 200 mosm/kg gradient is maintained across ascending limb at any horizontal level by active transport
 ▪ this gradient multiplied by counter-current flow in loop
 o steady state situation:
 ▪ NaCl entering medullary interstitium from ALH AND
 ▪ Water entering medullary interstitium from DLH
 ⟷ both taken away by peritubular capillaries as result of Starlings forces

 • juxtamedullary nephrons have gradient spread over longer distance:
 o longer loops
 o thin ascending limbs
 o osmolality at apex greater
Counter-Current Exchange of Vasa Recta

- counter-current exchange of ons & water in hairpin loops of vasa rectae
- does not include bulk flow of medullary interstitial fluid into capillaries due to norm Starling Forces
- vessels closely assoc with LOH:
 - descending vessels into medulla:
 - water – lost from vessels (diffuse out)
 - NaCl – absorbed into vessels (diffuse in)
 - @ tip of LOH osmolality ~1200mosm/kg
 - ascending vessels out of medulla (process reversed):
 - water – absorbed
 - NaCl – lost
 - @ end of vasa recta fluid leaving ~320mosm/kg
- process of movement of water & NaCl is passive diffusion
- vasa rectae have slow/sluggish blood flow
- recirculation of water & solutes prevents osmotic gradient in medullar from being washed out
 - allow Na & urea to remain in interstitial spaces
 - maintenance of hypertonicity at base/apex LOH

Role of Urea

- reabsorbed loop of Henle
- urea contributes to
 - ~50% of medullary osmolality due to urea
 - ↓: impt in determining max osmolality of urine
 - ↑: concentrating ability of urine
- cortical & outer medullary sections of CDs
 - impermeable to urea
 - water is reabsorbed from these segments ⇒ ↑luminal urea conc
- high conc of urea in prox CD ⇒ ↑ed diffusion out of CD lumen in inner medullary CD
 - diffusion out further ↑ed by ADH
- in urea diffusion area: ↑ed diffusion out of urea ⇒ ↑ed movement out of lumen. ↓: interstitial urea conc remains high
 - Nb urea & water movement indep of each other but balance each other

- urea conc of inner medullary interstitial fluid equilibrates with urea conc in CD
 - ↓: the NaCl in the interstitium need only balance the tubular solutes other than urea
- urea transporters move urea by facilitated diffusion
- amount of urea in interstitium varies with urine filtered which depends on diet input
• while making conc urine:

<table>
<thead>
<tr>
<th>Interstitial fluid @ tip of inner medulla</th>
<th>urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea 650</td>
<td>urea 700</td>
</tr>
<tr>
<td>Na+Cl 750</td>
<td>non-urea solutes 700</td>
</tr>
<tr>
<td>(Na,Cl,K,urate, creatinine etc)</td>
<td></td>
</tr>
</tbody>
</table>

• amount of urea in medullary interstitium & urine varies with amount filtered into lumen

\[\downarrow \text{depends on dietary protein intake} \]

\[\downarrow \text{ie high protein diet } \uparrow \text{ ability of kidneys to conc urine} \]

Osmotic Diuresis

• osmotic diuresis = large amount of unreabsorbed solute in renal tubules \[\Rightarrow \uparrow \text{urine volume} \]

• solute not reabsorbed in prox tubule \[: \Rightarrow : \]
 - hold water in tubule
 - \[\downarrow \text{conc gradient to facilitate Na pumped out of prox tubule} \text{(NHE)}: \]
 - Na conc falls when water reabsorption \[\downarrow \text{ed} \] as more dilute fluid in tubule
 - Limiting conc gradient is reached & further prox Na reabsorption is prevented \[\Rightarrow \text{more Na in tubule fluid} \Rightarrow \text{more water stays with it} \]
 - \[\downarrow \text{loop of Henle presented with } \uparrow \text{volume of isotonic fluid:} \]
 - \[\downarrow \text{ed Na conc, } \uparrow \text{ed amount of Na/time} \]
 - \[\downarrow \text{medullary hypertonicity} \Rightarrow \downarrow \text{reabsorption of Na & water} \]
 - \[\downarrow \text{because limiting conc gradient for Na reabsorption is reached} \Rightarrow \downarrow \text{Na, K, Cl reabsorption from ascending LH} \]
 - \[\uparrow \text{fluid through distal tubule but } \downarrow \text{osmotic gradient through medullary pyramids} \Rightarrow \downarrow \text{less water reabsorbed in collecting ducts} \]
 - \[\downarrow \Rightarrow \text{overall } \uparrow \text{urine volume & } \uparrow \text{excretion of Na} \]

• process can be initiated by substance that
 - are filtered but not reabsorbed eg mannitol
 - substance which exceeds reabsorption capacity of tubules eg glucose

• DM:
 - High BSL \[\Rightarrow \text{glucose in filtrate high } \Rightarrow \text{exceed TmG} \Rightarrow \text{glucose remain in tubules} \]

• Difference between osmotic diuresis & water diuresis:
 - Water:
 - Amount water reabsorbed in prox nephron = normal
 - Max urine flow 16ml/min
 - Osmotic:
 - \[\uparrow \text{ed urine flow from } \downarrow \text{ed water reabsorb in prox nephron} \Rightarrow \uparrow \uparrow \uparrow \text{urine volume} \]
 - as load of excreted solute \[\uparrow \text{s conc of urine closes in on that of plasma} \]
 - \[\downarrow \text{despite max vasopressin secretion} \]
Relation of Urine Conc to GFR

- size of osmotic gradient along medullary pyramids ↑ed when rate of flow through loop of Henle ↓ed
- dehydration ⇒ ↓GFR ⇒ ↓volume fluid into countercurrent system ⇒ ↓flow rate in loop ⇒ ↑urine conc
- when GFR is low urine can become concentrated even without vasopressin
- if no vasopressin & 1 constricted renal art:
 - constricted side ⇒ ↓GFR ⇒ hypertonic urine
 - non constricted ⇒ norm GFR ⇒ hypotonic urine

Free Water Clearance

- gain or loss of water by excretion of a concentrated or dilute urine
- free water clearance

\[\text{CH}_{20} = \frac{V - \text{Uosm}}{\text{Posm}} \]

- CH20 = -ve when urine is hypertonic; +ve when hypotonic
- Max ADH CH20 = -1.3ml/min
- No ADH 14.5ml/min

Important Facts About Urine Concentration

- max conc urine
 - = 1400mosm/kg
 - may contain no Na ie solute may be urea, creatinine, urate, K etc
 - may be no NaCl in urine but NaCl remains the most imp solute in medullary interstitium in creating conc urine (draws water out of CDs)
- excretion of large amounts of Na always ⇒ excretion large amount of water
- excretion of large amounts of water can occur with no excretion of Na:
 - ↓ due to ↓ADH ⇒ ↑water excretion with no change in Na transport

Diuretics

- water ⇒ ↓vasopressin
- alcohol ⇒ ↓vasopressin
- large amount of osmotically active substance ⇒ osmotic diuresis
- xanthines eg caffeine ⇒
 - ↓reabsorption of Na
 - ↑GFR
- carbonic anyhydrase inhibitors (diamox) ⇒ ↓H secretion ⇒ ↑Na & K excretion
- thiazides ⇒ inhibit Na-Cl cotransported in early portion of distal tubule ⇒ ↑Na & Cl loss
- loops ⇒ inhibit Na-K-2Cl cotransporter in thick ascending loop of H
- K sparing diuretics (spiro) ⇒ inhibit Na-K exchange in collecting ducts by:
 - Inhibiting action of aldosterone
Effects of Disordered Renal Function

- Frequent findings in renal disease:
 - Protein, leucos, red cells & casts in urine
 - Loss of conc ability of urine
 - Uraemia
 - Acidosis
 - Abnormal retention of Na

Loss of Concentrating & Diluting Ability

- In renal disease often ↓conc ↑volume ⇒ polyuria
- Early disease – lose concentrating ability
- Advanced disease – lose conc & dilute ability ⇒ osmolality of urine fixed at plasma level
 - caused by
 - disruption of countercurrent mechanism
 - loss of functioning nephrons ∴ remaining ones must:
 - excrete more osmotically active substances ⇒ osmotic diuresis effect
 - normal for osmolality of plasma & urine equal
 - ↑filtration ⇒ progressive damage in prox tubule cells ⇒ +ve feedback cycle
- eventually oliguria or even anuria

Uraemia

- = breakdown products of protein metab accumulate in plasma
- symptoms lethargy, anorexia, N&V, confusion, muscle twitch, seizure, coma
- signs:
 - anaemia 2nd to ↓EPO
 - 2nd hyperparathyroidism 2nd to ↓active Vit D
- plasma urea & creat high
 - although symptoms from ↑ing organic acids & phenols

Acidosis

- common in chronic renal failure – unable to excrete acid products of metabolism
 - urine max acidified; acidosis because ↓ed renal tubular production NH4 ⇒ ↓secretion H
- renal tubular acidosis = specific unable to acidfy urine

Abnormal Na Handling

- CRF: retain Na ⇒ oedema
- 3 causes of Na retention in renal failure:
 - acute GN: ↓amount of Na filtered
 - nephrotic syndrome: low plasma protein ⇒ ↑ECF ⇒ ↑aldosterone secretion ⇒ ↑Na retention
 - heart failure
Renal Clearance

- renal clearance = clearance of a substance is volume of plasma cleared from it by the kidneys/unit time

\[
Cl_k = \frac{\text{rate of elimination}}{\text{Plasma []},} = \frac{[]_{k} \cdot UO}{\text{plasma []},}
\]

The Bladder

Filling

- ureter walls have smooth mm – spiral, longitudinal, circular bundle
 - no distinct mm layers
- peristaltic contractions 1-5x/min
- ureters pass obliquely through bladder wall which keeps ureters closed inbetween peristalsis

Emptying

- smooth mm arranged
 - spiral,
 - long
 - circular = detrusor mm
 - contraction of this mm \(\Rightarrow\) bladder emptying
- internal urethral sphincter:
 - mm fibres pass either side of urethra
 - not a formal sphincter
- external urethral sphincter:
 - true sphincter of skeletal mm
- bladder epithelium made of superficial flat cells, & deep cuboidal cells
- micturation =
 - spinal reflex facilitated & inhibited by higher brain centres
 - gives voluntary control
 - perineal & external mm relax
 - detrusor contracts
 - int urethral sphincter serves to prevent retrograde ejaculation only
 - how voluntary urination initiated
- post micturation:
 - female urethra empties by gravity
 - male expelled by contractions of bulbocavernosus mm
- delay of micturation = learned ability to maintain ext urethral sphincter tone
- bladder filling \(\Rightarrow\) no initial rise in pressure
- degree of plasticity to bladder lining ie tension not maintained on prolonged stretch
- cystometrogram = pressure vs volume in bladder :
 - initial \(\uparrow\)pressure (Ia)
 - long flat segment (Ib) \(–\) law of lapace ie pressure in sphere = 2x wall tension/radius
 - \(\uparrow\)as \(\uparrow\)tension, radius also \(\uparrow\)s :: minimising \(\uparrow\)in pressure
 - sudden \(\uparrow\)pressure when micturation begins (II)
- urge to void 1st felt \(\sim\)150ml; fullness \(\sim\)400ml
Reflex Control

- bladder smooth mm has inherent contractile activity
 - threshold for this activity is higher than stretch receptor reflex from bladder wall
 - needs intact nerve supply
- nerves:
 - afferent = pelvic nerves
 - efferent = parasympathetic
- reflex in sacral portion of spinal cord
- 300-400ml ⇒ reflex contraction
- sympathetic nerves no function in peeing
 - in males prevent retrograde ejac
- higher centre mediation of reflex:
 - facilitatory - pontine region & post hypothalamus
 - midbrain – inhibitory
- able to voluntary initiate spinal reflex to start pee even if bladder empty

Micturition

- inhibit:
 - anticholinergics
 - sympathomimetics (flow)
- enhance:
 - cholinergics
 - alpha blockers (flow)

Effects of Deafferentation

- abolish dorsal sacral roots (no afferent nerves) ⇒
 - no reflex contraction of bladder
 - becomes:
 - thin walled
 - hypotonic
 - some contractions remains – intrinsic response to smooth mm stretch

Effects of Denervation

- both afferent & efferent nerve destroyed
- bladder flaccid & distended initially
- then mm of decentralised bladder becomes active ⇒ many contraction waves ⇒ frequent dribbling
- bladder shrinks & hypertrophied
 - hypertrophic vs hypotonic cause not known

Effects Spinal Cord Transection

- during spinal shock:
 - bladder flaccid & unresponsive
 - will overfill ⇒ urine dribbling through sphincter
- post spinal shock:
 - voiding reflex returns but no voluntary control or higher centre mediation
- some paraplegics train self to initiate voiding by stroking thighs ie mild mass reflex
- spastic neurogenic bladder:
 - some instances
 - voiding reflex hyperactive
 - ↓volume
 - hypertrophied