1. Electrical Heart

Table of Contents

Origin & Spread of Excitation ... 2
 Anatomy ... 2
 Cardiac Muscle APs & Pacemaker APs ... 2
 Cardiac AP ... 2
 Pacemaker Potential ... 4
 SAN vs AVN ... 5
 Spread of Cardiac Excitation .. 5

Cardiac Arrhythmias ... 6
 Classification ... 6
 Cardiac Rate .. 6
 Delayed After Polarisations .. 6
 Abnormal pacemakers .. 7
 Ectopic Foci of Excitation .. 7
 ReEntry ... 7
 Atrial Arrhythmias ... 7
 Ventricular Arrhythmias ... 8
 Long QT .. 8
 Accelerated AV Conduction ... 9

Myocardial Excitability vs Irritability ... 9

ECG .. 10
 Unipolar Leads .. 11
 Precordial Leads .. 12

His Bundle Electrogram ... 12

ECG Monitoring Systems in Anaesthetics .. 13
 3 Electrode Systems .. 13
 5 Electrode System .. 13
 Modified 3 Lead System .. 13

Surface Recordings Compared to Actual APs .. 13

Diseases Effecting ECGs ... 14
 Myocardial infarction ... 14
 Post MI Vent Arrhythmias ... 14
 Electrolyte Effects on ECG .. 14
Origin & Spread of Excitation

Anatomy
- SA node = junction SVC & R atrium
- AV node = R post portion of intraatrial septum
- 3 bundles of atrial fibres which connect SA & AV node:
 - anterior tract of Bachman
 - middle tract of Wenckebach
 - post tract of Thorel
 - conduction also through atrial myocytes
- AV node gives of bundle of His:
 - Left BB – from top of interventricular septum
 - Anterior fascicle
 - Post fascicle
 - R BB – continuation of bundle of His
- Branches and fasicles run subendocardially each side of septum
- Contact Purkinje system
- Conduction system composed of modified cardiac mm
- SA node & AV node contain small round cells with gap junctions
 - pacemaker cells
- Atrium separated from ventricle by fibrous ring ∴ only conduction between 2 is through His bundle
- Vagus & sympathetic distribution:
 - Left ⇒ AV node
 - Right ⇒ SA node
- Sympathetic fibres:
 - From stellate ganglion
 - Norad fibers = epicardial
- Vagal fibers = endocardial
- Cross connection between symp & parasymp:
 - Ach acts presynaptically ⇒ ↓Norad from symp nerves
 - Neuropeptide Y from symp system ⇒ ↓Ach release

Cardiac Muscle APs & Pacemaker APs
- Seen atrial, ventricular & purkinje fibres:

Cardiac AP
- Resting potential -90mV
- Depolarisation spreads rapidly between cells due to gap junctions
1. Electrical Heart

- Phases:
 - 0 = rapid depolarisation towards threshold
 - Na influx via fast voltage gated Na channel opening in response to AP
 - Overshoot seen briefly as Na channels self inactivating
 - 1 = rapid repolarisation –
 - Na channels close
 - Ca open – Ca start to flow in
 - K channels open – K flow out
 - 2 = plateau –
 - Ca influx in which maintains depolarisation (via L type channel)
 - Na channel closing continues which contines to repolarisation
 - 3 = repolarisation –
 - rapid K channel
 - slow K channel
 - both show K out
 - Na & Ca channels return to baseline state
 - Ion channels & electrogenic pumps return membrane to resting potential
 - 4 = return to resting membrane potential –
 - K channels return to baseline state
 - Na/K/ATPase electrogenic pump

Refractory Period

- Ventricular mm AP’s refractory period = ~250ms:
 - ~200ms = absolute (ARP)
 - ~50ms = relative (RRP)
- ARP:
 - extends into phase 3
 - Na channels are still in an inactive state
- RRP:
 - -50 to -90mV
 - possible to elec stim the cell but need a larger stim and resultant AP will be smaller
 - contraction weaker as well (less Ca influx)
- refractory plateau impot:
 - tetany:
 - mechanical response to multiple elect stim is one single twitch
 - in skeletal mm multiple stim ⇒ fused twitches ie tetany which would be bad in heart
 - strength of contraction:
 - influx of Ca during plateau phase ↑s intracellular Ca
 - adrenaline stim ⇒ longer plateau ⇒ +ve inotropy
By Adam Hollingworth

Pacemaker Potential

- seen only in SA, AV nodes
- are other latent pacemaker cells in conduction system if nodal disease
- resting potential -60mV but not stable
- pacemaker cells display auto-rhythmicity ie will always want to move to threshold
- phase 1 & 2 of cardiac AP are absent as no depolarisation plateau
- phases:
 - prepotential (4) ⇒ slow drive to threshold
 - fall in membrane K permeability
 - \(I_f \) = inward slow positive current displayed: (for “funny” current)
 - opening of transient Ca (T type) ⇒ Ca influx
 - not effecting by catecholamines
 - only found in cells which lack a T tubule system ie pacemaker cells & vasc smooth mm (not ventricular myocardium)
 - ↑activity of electrogenic 3Na-2Ca exchange system
 - driven by inward movement of Ca
 - depolarisation (0)– opening long lasting Ca channel ⇒ Ca influx
 - (L type) long lasting Ca channel
 - produce long lasting current relative to Na
 - the most predominant Ca type
 - start opening during initial upstroke
 - verapamil & nifedipine block them
 - catecholamines activate them
 - repolarisation (3) – K channel opening ⇒ K efflux
 - hyperpolarisation (4)– closing of K channel, opening of H channel
 - passes Na & K

∴ action potential in pacemaker cells has:
 - auto-rhythmicity by ↓K ⇒ ↑Ca ⇒ ↑K permeability
 - no contribution by Na

- Vagal effect on pacemaker potential:
 - Cholinergic fibres
 - Membrane hyperpolarised by ↑ing K membrane permeability
 - Prepotential is slower to depolarise
 - Ach act on M2 receptor⇒
 - βy subunit of G protein ⇒ opening special K channel ⇒ K efflux ⇒ slows depolarising effect H channels
 - ↓cAMP in cell ⇒ slows opening of Ca channel
 - all ⇒ ↓speed of firing
Sympathetic input:
- Norad acts on β_1 receptor \Rightarrow
 - \uparrowcAMP \Rightarrow quicker opening of Ca channels \Rightarrow quicker depolarisation of prepotential
- other effects on pacemaker potential:
 - \uparrowtemp \Rightarrow \uparrowspeed of firing
 - digoxin \Rightarrow \downarrowspeed of firing esp AV node

SAN vs AVN
- ionic basis same for AVN & SAN
- rate of depolarisation of the pacemaker cells is slower in AVN
- \therefore SAN has the highest depolarisation rate & thus drives all pacemakers cells downstream

Spread of Cardiac Excitation

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Conduction Rate (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA node</td>
<td>0.05</td>
</tr>
<tr>
<td>Atrial pathways</td>
<td>1</td>
</tr>
<tr>
<td>AV node</td>
<td>0.05</td>
</tr>
<tr>
<td>Bundle of His</td>
<td>1</td>
</tr>
<tr>
<td>Purkinje system</td>
<td>4</td>
</tr>
<tr>
<td>Ventricular muscle</td>
<td>1</td>
</tr>
</tbody>
</table>

Atria
- AP generated by SAN spreads from cell to cell directly via gap junctions
- \therefore simultaneous contraction both atria
- atria separated from ventricle by fibrous tissue – must go via AVN & bundle of His
- Atrial depolarisation complete in 0.1s
- SAN through atrial mm at 1m/sec
- SAN \Rightarrow Left atrium via Bachmann’s bundle
- SAN \Rightarrow AVN via internodal pathways:
 - Anterior
 - Middle
 - Post

SAN
- $=$ normal pacemaker of heart
- lies in RA close to entry of SVC
- 2mm thick & 8mm long
- perfused with blood via sinus node artery
- 2 cell types:
 - small round cells (probably PMs)
 - longer elongated cells
- inherent d/c rate \sim 100/min
- influenced by autonomic & humeral activity
- depression of activity \Rightarrow next fastest pacemaker to take over $=$ escape rhythms

AVN
- at base of RA on R side of inter-atrial septum near opening of coronary sinus
- same types of cells of SAN but fever round cells
- conduction speed = 0.05m/sec
- has 3 zones:
 - AN zone = transitional zone between atria & node
 - N zone –cells here have long RRP so AV conduction slows with \uparrowatrial firing
 - NH zone = origin of His bundle
- Vagal & symp influence on the node apparent as explained previously
- AV nodal delay of 0.1s
allowing atria to finish filling ventricles before they contract
delay can be altered by autonomic system

Ventricles
• Impulses pass down R side of IV septum via Bundle of His
• After ~1cm His bundle splits:
 o R
 o L – splits into ant & post divisions
• His bundle has intrinsic rate & can take over if total AVN block
 ~30-40/min
• Bundle branches supply dense network of Purkinje fibres which innervate ventricles
• Purkinje cells:
 o largest cells in heart
 o fastest conduction velocity 1-4m/s
 o have long ARP – help block premature atrial impulses esp at slow HRs
• Depolarisation of ventricles
 o starts L side of septum and moves to R
 o then down to apex heart – so apex activated before bases
 o return along vent walls to AV groove
 o depolarises from inside to outside of vent walls:
 ▪ endocardial surfaces
 ▪ interventricular septum & papillary mms – prevents valve regurg & base for contraction
 ▪ epicardial surfaces – outside of RV activated 1st because of thinner walls
 ▪ last part to to depolarise = postero-basal LV
• conduction speed:
 o fastest purkinje system 4m/s
 o slowest SA & AV node 0.05m/s

Cardiac Arrhythmias

Classification
• According to site of origin:
 o Supraventricular vs ventricular
 o Narrow vs broad complex
• According to heart rate:
 o Tachy
 o brady

Cardiac Rate
• Normal sinus rhythm – originated in SA node
• Bradycardia –
 o Sleep
 o expiration
• Tachycardia:
 o Inspiration-
 ▪ Stretch receptors in lung ⇒ ↑parasymp inhibition of cardio-inhibitory area in medulla oblongata ⇒ ↑HR
 o Emotion
 o Exercise
 o Fever

Delayed After Polarisations
• Caused by inward current assoc with abnormally raised intracellular Ca
• Cause oscillations which ⇒ ectopic beats
Abnormal pacemakers
- Other parts of conduction system can become pacemakers
- SA node most rapid discharger of conduction system ⊂ normal pacemaker
- Complete heart block ⇒ idioventricular rhythm indep of atria
 - due to either:
 - AV nodal block – other AV node takes over ~45/min
 - infranodal block in His bundles – new pacemaker 15-35/min
 - Stokes Adams syndrome fainting & cerebral ischaemia
- 1st degree block
- 2nd degree block:
 - 2:1 mobitz
 - 2:2 Wenkebach
- RBBB
- LBBB - also see hemiblock in a fascicle:
 - Ant hemiblock ⇒ L axis deviation
 - Post hemiblock ⇒ R axis deviation
 - combinations – bifascicular or trifascicular block

Ectopic Foci of Excitation
- Can be encouraged by:
 - ↑ sympathetic activity
 - abnormal electrolytes
- Abnormal condition ± ⇒ spont d/c of His/Purkinje system or myocardium
 - ↑ ed automaticity of heart
- Extrasystole = Ectopic focus discharges ⇒ beat before next expected beat
- Paroxysmal tachycardia = repetitive d/c of ectopic focus at rate over SA node

ReEntry
- Common cause of paroxysmal tachyarrhythmia’s = defect in conduction permits circus movement
 - transient block on one side of conduction system ⇒ impulse down good side then back up diseased side ⇒ then repeat
 - in AV node re-entry:
 - retrograde flow back up diseased side ⇒ atrial depolarisation
 - next beat = echo beat
 - depolarisation then circus back down good side and continue
 - non-AV node re-entry:
 - abnormal extra bundle of connecting system connecting atria & vent
 - wave down AV node, retrograde through bundle of Kent
 - circus movements seen in atrium & vent

Atrial Arrhythmias
- atrial extrasystole:
 - ECG changes:
 - P wave abnormal
 - QRST normal
 - Extrasystole may depolarisation SA node ⇒ must repolarise before next normal beat
 - see pause which allows natural reset of rhythm
- Atrial tachycardia
 - Rate up to 220/min
By Adam Hollingworth

1. Electrical Heart

- when:
 - Regular atrial focus d/c
 - Re-entry circus tachy

- Atrial flutter:
 - Atrial rate 200-350
 - Anticlockwise circus in R atrium
 - Assoc 2:1 or greater Av block
 \[\text{as AV cannot conduct } >230\text{ beats/min}\]

- AF:
 - Atrial rate 300-500 irreg disorganised fashion
 - Vent rate 80-160
 - Cause unknown but include:
 - Multiple re-entrant circus excitation
 - Ectopic foci – often seen in pulmon veins ~4cm from heart

Consequences Atrial Arrhythmias
- If ⇒ high vent rate ⇒ ↓diastolic filling ⇒ heart failure
- Vagal stimulation effects:
 - Ach ⇒ ↓conduction in AV node & atrial myocardium
 - ↑AV block
- digoxin also blocks AV node

Ventricular Arrhythmias
- ectopic vent focus ⇒ extrasystole:
 - ECG:
 - abnormal QRS
 - P may be buried in QRS
 - unable to depolarise bundle of His \(\therefore\) no retrograde flow
 - no resetting of rhythm as in atrial ectopics
 \[\text{longer compensatory pause after ectopic}\]
 \[\text{SA node continues to fire regularly irrespective of vent activity}\]
 - common & usually benign
 - if early in diastole: may not be strong enough to create pulse at wrist
- Vent tachycardia (VT) =
 - Due to circus movement in ventricles
 - Torsade de pointes:
 - Form of VT with varying QRS morphology
 - Serious as ⇒ ↓CO
 - VF occasional complication of VT
- SVT with conduction block can be diff to differentiate with VT
 \[\text{need HBE – VT will not have a H spike}\]
- VF:
 - Muscle fibres contract in irreg and ineffective way
 - Due to multiple ectopic focus or circus movemt
 - Can be induced by defib during vulnerable period
 - Vulnerable period = midportion of T wave
 \[\text{when ventricular muscle at diff stages of de \\& repolarisation}\]
 \[\text{great time to start circus movmt}\]
 - most common cause of death in ACS is VF

Long QT
- long QT \(\approx\) ventricular repolarisation is irreg ⇒ ↑incidence of arrhythmia
- caused by:
 - ischaemia
 - drugs
Electrolyte abnormalities
- congenital – genes encoding for Na & K channels mutated

Accelerated AV Conduction

WPW
- additional aberrant connection between atria & vent:
 - types:
 - muscular or
 - nodal tissue ie bundle of Kent
 - conducts more rapidly than AV node ⇒ one vent excited before other
- ECG change:
 - short PR interval
 - upstroke slur
 - normal PJ interval (start P to end QRS)
- arrhythmias start:
 - following atrial extrasystole
 - beat goes 2 ways:
 - through AV node, retrograde through aberrant pathway back to atria
 - through aberrant pathway, retrograde through AV node (less common)
- congenital element:
 - mutation in AMP activated protein kinase
 - ?involved in suppressing development of abnormal pathways in utero

Lown-Ganong-Levine Syndrome
- short PR & normal QRS
- beat bypasses AV node by aberrant conduction pathway but then joins intraventricular conduction system before depolarising vents

Myocardial Excitability vs Irritability
- excitable =
 - ease with which myocardial cell can respond to stimulus by depolarization
 - index of excitability:
 - AP is initiated at different stages of the RRP
 - = the slope of phase 0 at this point
 - steeper slope = more excitable cell & faster velocity of conduction
 - hypokalaemia = hyperpolarised RMP (more –ve) but actually see ↑ ed excitability
 - hyperkalaemia = RMP moves towards zero. ∴ may see initially ↑ ed excitability. BUT in long term see ↓ excitability due to inactivation of Na channels. Significant ↑ K will eventually cause heart to stop in diastole.
- irritable =
 - used in context of a resting myocardial cell during phase 4
 - = size of stimulus needed to depolarize cell
 - index – difference between current potential & threshold potential
 - ↑ ed irritability = difference smaller ∴ depolarisation easier
 - but there is ↓ gradient & ↓ conduction velocity of phase 0
 - ↓ Ca ⇒ ↑ irritability ie = cause of tetany
ECG

- standard ECG =
 - 25mm/sec ⇒ 0.04sec/small sq, and 0.2 sec/big square
 - 1mV = 1cm

Einthoven’s triangle =
- heart at centre with 3 limb leads around
- triangle between shoulders & pubic symphysis
- electrodes record cardiac electrical activity in vertical plane
- 3 standard limb leads records electrical activity from 2 corners of triangle:
 - lead I = RA ⇒ LA
 - lead II = RA ⇒ LF (left foot)
 - lead III = LA ⇒ LF
 (4th electrode acts as an earth)

Depolarisation towards = upward deflection
Depolarisation away = downward
Repolarisation toward = downward
Repolarisation away = upward

P = atrial depolarisation
QRS = vent depolarisation & atrial repolarisation
T = vent repolarisation
QT = total duration of vent depolarisation & repolarisation
U = not always seen – repolarisation of papillary mms
J point = junction between QRS & ST segment

Lead 2 Example
- Lead 2 lies in axis of heart
- P wave: atrial depolarisation SAN ⇒ AVN which is down & Left (ie dep toward = upward)
- Small initial Q wave: depolarization starting in IV septum spreading down & right (ie dep away = downward)
- Large R wave = depolarisation spreads endo ⇒ epicardial & larger bulk of LV means net effect is down & left (ie dep toward = upward)
- Small S wave = activation of remaining ventricle, wave spreading upwards ie (dep away = downwards)
• T wave = ventricular repolarisation moving from epicardial to endocardial (ie repol away = upward)

ECG Intervals
• PR = 0.12-0.2 secs
 ↩ AV delay (0.1sec) accounts from most of delay
• QRS = <0.12
• QT = 0.3 0.43
 ↩ varies inversely with HR

ECG Pattern
• aVL & aVF look at ventricles ∴ mostly positive
• V1-V2:
 o No Q wave
 o Small initial R wave 2nd to L to R septal depolarisation
 o Large S wave – depolarisation down septum & into ventricle away from electrode
• V4-V6:
 o Small q = initial depolarisation across septum L to R
 o Large R – septal and vent depolarisation
 o Mod S – late depolarisation of vent moving back to atria

Cardiac Axis
• Mean QRS vector = -30 to +110
• L axis deviation if axis to left (up or <) of -30
• R axis deviation if axis to R (down or >) of +110

Unipolar Leads
• 3 electrodes of standard limbs leads are connected to each other
• use resistances of 5000 Ohms
• can create a central terminal with zero potential
 ↩ = common electrode
• exploring electrode can be combined with common electrode to create central terminal
• here potential difference between them = actual potential
• central = reference = zero

• 12 lead ECG 3 unipolar leads are recorded ie aVR, aVL, aVF
• a = augmented
• Goldberger modification = resistances removed & exploring electrode disconnected from central terminal ⇒ larger deflections
Precordial Leads

- Place electrodes closer to heart around thorax
- Neutral electrode formed by standard leads
- Exploring electrode placed at 6 different sites on chest wall (V1-6)

His Bundle Electrogram

- Catheter placed next to tricuspid valve:

 ![His bundle electrogram](image)

- A = AV node activated
- H = transmission through His bundle
- V = ventricular depolarisation
- With HBE & ECG can measure 3 intervals:
 - PA interval =
 - start of P to A wave
 - = conduction time from SA node to AV node
 - AH interval:
 - Start of A wave to start of H spike
 - =AV nodal conduction time
 - HV interval
 - Start H to start of QRS
 - = conduction in bundle of His & bundle branches
- AH time >double others ie AV node very slow to conduct
ECG Monitoring Systems in Anaesthetics

3 Electrode Systems
- ECG observed alone 1 bipolar lead between 2 electrodes
- 3rd electrode = ground
- selector switch allows you to change between electrodes
- simple system to monitor rate & rhythm
- limited info on myocardial ischaemia

5 Electrode System
- allows for recording of all standard 6 limb leads as well as one precordial lead

Modified 3 Lead System
- 3 lead system modified to give better results:
 - maximise P wave height for diagnosing arrhythmias
 - incr sensitivity to detect ant ischaemia
- several modifications exist
- one example = CS₅ lead:
 - bipolar lead best & easiest alt to true V5 lead for monitoring ischaemia
 - RA electrode placed under R clavicle
 - LA electrode placed in V5 spot
 - LL in usual spot for grounding
- Leads:
 - Lead 1 = detection ant ischaemia
 - Lead 2 = inferior ischaemia/arrhythmias

Surface Recordings Compared to Actual APs
Diseases Effecting ECGs

Myocardial infarction

Early Pattern
- 3 major changes - all cause ST elevation

1. Rapid Repolarisation – current out of infarct
- rapid repolarisation of infarcted muscle fibres
- due to faster opening K channels
- develops seconds after infarct
- lasts few minutes

2. Decreased Resting Membrane Potential – current in
- more K channels open ⇒ ↑ed K efflux ⇒ resting membrane potential lower
- causes TQ segment depression
- ↓on ECG looks like ST elevation

3. Delayed Depolarisation – current out
- 30min after infarct

Later Pattern
- hours – few days
- dead mm & scar tissue electrically silent
- infarcted area ↓: negative compared to norm myocardium during systole ⇒ path Q waves
- anterior L vent infarction ⇒ failure of progression of R wave
- septal infarction ⇒ BBB or other heart block

Late Established Pattern
- days to weeks
- ECG:
 - Q waves persist
 - ST segments isolectric
 - T inversion – where previous ST elevation; Tall Ts where prev ST depression
- May persist for rest of life

Very Late Pattern
- Months to years
- Path Q waves persist
- T waves gradually return to norm

Post MI Vent Arrhythmias
- timing:
 - 30mins post – re-entry arrhythmias common
 - 12hrs post – due to ↑ed automaticity
 - 3days post – due to reentry
- damage to epicardial regions interrupt sympathetic nerve fibres⇒
 - denervation super-sensitivity to catecholamines in area beyond infarct
- damage to endocardial regions interrupt vagal fibres ⇒ unopposed sympathetic action

Electrolyte Effects on ECG

Na
- ↓Na: low voltage ECG

Hyperkalaemia
- changes in sequence:
 - tall peaked T waves
 - paralysis of atria – loss of P waves
 - prolonged QRS
• resting membrane potential of myocardium ↓’s ⇒ ↓excitability of myocardium ⇒ heart stops in diastole

Hypokalaemia

• in sequence:
 o ST segment depression
 o U wave
 o PR prolongation
 o ±T inversion

• not as fatal as hyperkalaemia

Hypercalcaemia

• ↑ed myocardial contractility & ↓ed ability to relax
 ↓in vivo difficult to get plasma Ca levels high enough to effect heart

Hypocalcaemia

• prolongation of ST segment ∴ prolongation of QT
 ↓mimicked by drugs incl TCAs, phenothiazines